Prediction of blast-induced ground vibration using artificial neural networks

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.34020

Keywords:

Peak particle velocity; Blast-induced ground vibration; Rock blasting; Artificial neural network; Empirical equations.

Abstract

The peak particle velocity is the most commonly utilized metric in the mineral sector for quantifying and evaluating the damage potential of blast-induced ground vibration (PPV). Over time, initiatives have been conducted with the goal of measuring PPV levels. Intelligent systems are potential methods for estimating rock blasting results, due to significant improvements in computer technology. In this regard, the goal of this research is to use artificial neural networks to evaluate seismic vibrations caused by rock blasting with explosives in a mine in Quadrilátero Ferrífero. The database obtained in the field was separated into training (70%) and test (30%) samples. Different groups of variables were examined considering the necessity of selecting appropriate input variables for neural network training. The distance between the monitoring and detonation points, as well as the maximum charge per delay, were input variables in the network that performed best. The same database was used to compare the performance of neural networks with the performance of empirical and multiple regression models. Finally, in terms of coefficient of determination (R2) and root mean square error (RMSE) for measured and predicted data, the neural network model outperformed empirical equations and multiple regression. Furthermore, the importance of choosing the right input variables when using neural networks to estimate PPV was demonstrated.

References

Ainalis, D. et al. (2017). Modelling the source of blasting for the numerical Simulation of blast-induced ground vibrations: a review. Rock Mech Rock Eng, 50, 171-193.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, Budapest, 267–281.

Ambraseys, N.R., & Hendron, A.J. 1968. Dynamic behaviour of rock masses: rock mechanics in engineering practices. Wiley, London.

Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K., & Khandelwal, M. (2015). Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ Earth Sci, 74:2845–2860.

Associação Brasileira de Normas Técnicas (ABNT). (2018). NBR 9653: Guia para avaliação dos efeitos provocados pelo uso de explosivos nas minerações em áreas urbanas – Procedimento. Rio de Janeiro.

Ataei, M., & Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining & Environment, Vol.8, No.2, 291-304.

Bartlett, M. S. (1951). The effect of standardization on a chi square approximation in factor analysis. Biometrika, 38, 337–344.

Bayat, P., Monjezi, M. Rezakhah, M., & Armaghani, D. J. (2020). Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine. Natural Resources Research, 29, 6: 4121-4132.

Box, G.E.P., & Cox, D.R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26, 2, 211-252.

Burger, S.V. 2018. Introduction to machine learning with R. O'Reilly Media, Sebastopol, USA.

Data Science Academy. (2021). O Neurônio, Biológico e Matemático. In: Deep Learning Book, https://www.deeplearningbook.com.br/o-neuronio-biologico-e-matematico/

Dehghani, H., & Beiromvand, H. (2019). Blasting pattern design for decreasing the ground vibration using genetic algorithm. Journal of Mineral Resources Engineering, 4, 2: 10 – 15.

Dinis da Gama, C., & Bernardo, P.A.M. (2001). Condições Técnicas para Uso de Explosivos na Escavação de Túneis Urbanos em Maciços Rochosos. Curso sobre Túneis em Meios Urbanos (organizado por SPG e FCT-UC) – Coimbra.

Duvall, W. I., & Petkof, B. 1959. Spherical propagation of explosion generated strain pulses in rock. USBM RI 5483.

Fávero, L. P., & Belfiore, P. (2017). Manual de análise de dados. 1. ed. Elsevier, Rio de Janeiro, Brasil.

Fritsch, S., & Günther, F. (2008). neuralnet: Training of Neural Networks. R Foundation for Statistical Computing, R package version 1.2.

Ghoraba, S., Monjezi, M., Talebi, N., Armaghani, D.J., & Moghaddam, M. (2016). Estimation of ground vibration produced by blasting operations through intelligent and empirical models. Environ Earth Sci, 75, 1137.

Hair, J., Black, W., Babin, B., Anderson, R., & Tathan, R. (2009). Análise Multivariada de Dados. 6. ed. Bookman, Porto Alegre, Brasil.

Haykin, S. (2001). Redes neurais: princípios e prática. Bookman, Porto Alegre, Brasil.

Hosseini, S. A., Tavana, A., Abdolahi, S. M., & Darvishmaslak, S. (2019). Prediction of blast‑induced ground vibrations in quarry sites: a comparison of GP, RSM and MARS, Soil Dynamics and Earthquake Engineering, 119, 118–129.

Indian Standard. (1973). Criteria for safety and design of structures subjected to under ground blast, ISI., IS-6922.

Iphar, M., Yavuz, M., & Ak, H. (2008). Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environ Geol, 56:97–107.

Khandelwal, M., Kumar, D. L., & Yellishetty, M. (2011). Application of soft computing to predict blast-induced ground vibration. Eng Comput, 27, 2, 117–125.

Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. Int J Rock Mech Min Sci, 46:1214–22.

Kovács, Z. L. (2002). Redes neurais artificiais: fundamentos e aplicações. 3. ed. Livraria da Física, São Paulo, Brasil.

Langefors, U., & Kihlstrom, B. (1963). The modern technique of rock blasting. Wiley, New York.

Li, D. T., Yan, J. L., & Zhang, L. (2012). Prediction of blast-induced ground vibration using support vector machine by tunnel excavation. Appl Mech Mater, 170:1414–8.

Longjun, D., Xibing, L., Ming, X., & Qiyue, L. (2011). Comparisons of Random Forest and Support Vector Machine for Predicting Blasting Vibration Characteristic Parameters. Procedia Engineering, 26, 1772 – 1781.

Mohamed, M. T. (2011). Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. Int J Rock Mech Min Sci, 48, 5, 845.

Mohamednejad, M., Gholami, R., & Ataei, M. (2012). Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations. Tunn Undergr Space Technol, 28, 238–244.

Monjezi, M., Ghafurikalajahi, M., & Bahrami, A. (2011). Prediction of blast-induced ground vibration using artificial neural networks. Tunn Undergr Space Technol, 26: 46–50.

Nicholls, H. R. Johnson, C. F., & Duvall, W. I. (1971). Blasting vibrations and their effects on structures. Pittsburgh: USBM, Bulletin 656.

R Project. (2021). The R Project for Statistical Computing. https://www.r-project.org/

Rajabi, A. M., & Vafaee, A. (2019). Prediction of blast-induced ground vibration using empirical models and artificial neural network (Bakhtiari Dam access tunnel, as a case study). Journal of Vibration and Control, Vol 0 (0), p. 1-12.

Rezaeineshat, A., Monjezi, M., Mehrdanesh, A., & Khandelwal, M. (2020). Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomech. Geophys. Geo-energ. Geo-resour. 6:40.

Roy P. P. (1991). Vibration control in an opencast mine based on improved blast vibration predictors. Min Sci Technol,12, 157–65.

Santos, F. L. (2013). Redes neurais artificiais ARTMAP-fuzzy aplicadas ao estudo de agitação marítma e ondas de lagos. Tese de doutorado em Engenharia Elétrica. Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, Brasil.

Silveira, L. G. C. (2017). Controle de vibrações e pressão acústica no desmonte de rochas com explosivos: estudo de caso em uma mina do quadrilátero ferrífero. Dissertação (Mestrado em Engenharia Mineral) - Programa de Pós-Graduação em Engenharia Mineral, Universidade Federal de Ouro Preto, Ouro Preto.

Tissot, H. C., Camargo, L. C., & Pozo, A. T. R. (2012). Treinamento de redes neurais feedforward: comparativo dos algoritmos backpropagation e differential evolution. In: Encontro Brasileiro de Inteligência Artificial, 2012, Porto Alegre, Curitiba, Brasil.

Navarro Torres, V., Silveira, L. G., Lopes, P. F., & Lima, H. M. (2018). Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community. Journal of Cleaner Production, 187, 514–524.

Trigueros, E., Cánovas, M., Muñoz, J.M., & Cospedal, J. (2017). A methodology based on geomechanical and geophysical techniques to avoid ornamental stone damage caused by blast-induced ground vibrations. International Journal of Rock Mechanics & Mining Sciences, 93, p. 196–200.

Tuorrini, J. B., & Mello, C. H. P. (2012). Metodologia de pesquisa em engenharia de produção. UNIFEI, Itajubá.

Yan, Y., Hou, X., & Fei, H. (2020). Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. Journal of Cleaner Production, 260, 121-135.

Zhou, J., Asteris, P. G., Armaghani, D. J., & Pham, B. T. (2020). Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dynamics and Earthquake Engineering, 139, 106390

Published

03/09/2022

How to Cite

ZORZAL, C. B.; SANTOS, F. L. dos; SILVA, J. M. da .; SOUZA, R. de F. . Prediction of blast-induced ground vibration using artificial neural networks. Research, Society and Development, [S. l.], v. 11, n. 11, p. e576111134020, 2022. DOI: 10.33448/rsd-v11i11.34020. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34020. Acesso em: 8 nov. 2024.

Issue

Section

Engineerings