Condiciones del proceso de dióxido de carbono a alta presión: comparaciones y algunas disparidades en el procesamiento de alimentos
DOI:
https://doi.org/10.33448/rsd-v11i12.34068Palabras clave:
CO2 en fase densa; Conservación de alimentos; Tecnología no convencional; Frescor.Resumen
La alta demanda de los consumidores por alimentos de excelente calidad ha llevado al desarrollo de investigaciones en la reducción de perdidas nutricionales y organolépticas causadas por los tratamientos térmicos convencionales. El uso de CO2 a alta presión (HP-CO2) es una de estas tecnologías emergentes que ha mostrado excelentes resultados en la conservación de alimentos. En la literatura se pueden encontrar divergencias en el efecto de los parámetros de proceso con HP-CO2. Por esto, en este trabajo realizamos una revisión bibliográfica sobre estos parámetros los cuales son: fase termodinámica, presión, relación de CO2 e tiempo de tratamiento. Se pudo observar, que las enzimas y microorganismos poseen diferente resistencia a los parámetros de proceso y la cuál puede ser aun mayor si se tiene en cuenta, el tipo de microorganismo, enzima y composición del alimento. Por lo tanto, es posible que los resultados obtenidos en un alimento sean diferentes a otro así el tratamiento sea el mismo debido a la diferencia en la composición del alimento.
Citas
Alvarenga, P. D. L., Cavatti, L. S., Valiati, B. S., Machado, B. G., Capucho, L. C, & Domingos, M. M. et al. (2021). Aplicação do ultrassom no processamento de frutas e hortaliças. Brazilian Journal Of Food Technology, 24. doi: 10.1590/1981-6723.27420.
Amaral, G., Silva, E., Cavalcanti, R., Cappato, L., Guimaraes, J., & Alvarenga, V. et al. (2017). Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends In Food Science &Amp; Technology, 64, 94-101. doi: 10.1016/j.tifs.2017.04.004.
Barbosa, J., Puton, B., Fischer, B., Junges, A., Paroul, N., & Steffens, C. et al. (2020) Effect of Supercritical CO2 on Physicochemical Characteristics and D-Value of S. aureus in Raw Salmon. Industrial Biotechnology, 16(6), 368-374. doi: 10.1089/ind.2020.0024.
Benito-Román, Ó., Teresa Sanz, M., Melgosa, R., de Paz, E., Escudero, I., & Beltrán, S. (2019). Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). The Journal of Supercritical Fluids, 147, 310-321. doi:10.1016/j.supflu.2018.07.026.
Berenhauser, A., Soares, D., Komora, N., De Dea Lindner, J., Schwinden Prudêncio, E., Oliveira, J., & Block, J. (2017). Effect of high-pressure carbon dioxide processing on the inactivation of aerobic mesophilic bacteria and Escherichia coli in human milk. CyTA - Journal of Food, 16(1), 122-126. doi: 10.1080/19476337.2017.1345983.
Bourdoux, S., Zambon, A., Van der Linden, I., Spilimbergo, S., Devlieghere, F., & Rajkovic, A. (2022). Inactivation of foodborne pathogens on leek and alfalfa seeds with supercritical carbon dioxide. The Journal of Supercritical Fluids, 180, 105433. doi:10.1016/j.supflu.2021.105433.
Buszewski, B., Wrona, O., Mayya, R., Zakharenko, A., Kalenik, T., & Golokhvast, K. et al. (2021). The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. Critical Reviews in Food Science and Nutrition, 1-14. doi:10.1080/10408398.2021.1902939.
Casas, J., Valverde, M., Marín-Iniesta, F., & Calvo, L. (2012). Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO2 in apple cream. International Journal of Food Microbiology, 156(1), 18-24. doi: 10.1016/j.ijfoodmicro.2012.02.015.
Castillo-Zamudio, R., Paniagua-Martínez, I., Ortuño-Cases, C., García-Alvarado, M., Larrea, V., & Benedito, J. (2021). Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham. Innovative Food Science & Emerging Technologies, 67, 102557. doi: 10.1016/j.ifset.2020.102557.
Ceni, G., Fernandes Silva, M., Valério Jr., C., Cansian, R., Oliveira, J., Dalla Rosa, C., & Mazutti, M. (2016). Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. Journal of CO2 Utilization, 13, 24-28. doi: 10.1016/j.jcou.2015.11.003.
Chen, H., Guan, Y., Wang, A., & Zhong, Q. (2022). Inactivation of Escherichia coli K12 on raw almonds using supercritical carbon dioxide and thyme oil. Food Microbiology, 103, 103955. doi: 10.1016/j.fm.2021.103955.
Debs-Louka, E., Louka, N., Abraham, G., Chabot, V., & Allaf, K. (1999). Effect of Compressed Carbon Dioxide on Microbial Cell Viability. Applied and Environmental Microbiology, 65(2), 626-631. doi: 10.1128/aem.65.2.626-631.1999.
Donato, H., & Donato, M. (2019). Etapas na Condução de uma Revisão Sistemática. Acta Médica Portuguesa, 32(3), 227. doi: 10.20344/amp.11923.
Enomoto, A., Nakamura, K., Nagai, K., Hashimoto, T., & Hakoda, M. (1997). Inactivation of Food Microorganisms by High-pressure Carbon Dioxide Treatment with or without Explosive Decompression. Bioscience, Biotechnology, and Biochemistry, 61(7), 1133-1137. doi: 10.1271/bbb.61.1133.
Fraser D. (1951). Bursting Bacteria by Release of Gas Pressure. Nature, 167(4236), 33-34. doi: 10.1038/167033b0.
Feng, J., Zheng, Y., Zhang, X., Zhou, R., & Ma, M. (2022). Effect of supercritical carbon dioxide on bacterial community, volatile profiles and quality changes during storage of Mongolian cheese. Food Control, 109225.
Ferrentino, G., Barletta, D., Donsì, F., Ferrari, G., & Poletto, M. (2010). Experimental Measurements and Thermodynamic Modeling of CO2 Solubility at High Pressure in Model Apple Juices. Industrial & Engineering Chemistry Research, 49(6), 2992-3000. doi: 10.1021/ie9009974.
Fleury, C., Savoire, R., Harscoat-Schiavo, C., Hadj-Sassi, A., & Subra-Paternault, P. (2018). Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. The Journal of Supercritical Fluids, 141, 240-251. doi: 10.1016/j.supflu.2018.01.009.
Gallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: a perspective. Foods 7: 164.
Garcia-Gonzalez, L., Geeraerd, A., Spilimbergo, S., Elst, K., Van Ginneken, L., & Debevere, J. et al. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. International Journal of Food Microbiology, 117(1), 1-28. doi: 10.1016/j.ijfoodmicro.2007.02.018.
Gasperi, F., Aprea, E., Biasioli, F., Carlin, S., Endrizzi, I., Pirretti, G., & Spilimbergo, S. (2009). Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chemistry, 115(1), 129-136. doi: 10.1016/j.foodchem.2008.11.078.
Hossain, M., Nik Ab Rahman, N., Balakrishnan, V., F.M. Alkarkhi, A., Ahmad Rajion, Z., & Ab Kadir, M. (2015). Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology. Waste Management, 38, 462-473. doi: 10.1016/j.wasman.2015.01.003.
Hu, W., Zhou, L., Xu, Z., Zhang, Y., & Liao, X. (2013). Enzyme Inactivation in Food Processing using High Pressure Carbon Dioxide Technology. Critical Reviews in Food Science and Nutrition, 53(2), 145-161. doi: 10.1080/10408398.2010.526258.
Illera, A., Sanz, M., Beltrán, S., & Melgosa, R. (2019). High pressure CO2 solubility in food model solutions and fruit juices. The Journal of Supercritical Fluids, 143, 120-125. doi: 10.1016/j.supflu.2018.07.009.
Illera, A., Sanz, M., Trigueros, E., Beltrán, S., & Melgosa, R. (2018). Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering, 239, 64-71. doi: 10.1016/j.jfoodeng.2018.06.027.
Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., & Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. doi: 10.1016/j.fbp.2019.07.006.
Kincal, D., Hill, W., Balaban, M., Portier, K., Wei, C., & Marshall, M. (2006). A Continuous High Pressure Carbon Dioxide System for Microbial Reduction in Orange Juice. Journal of Food Science, 70(5), M249-M254. doi: 10.1111/j.1365-2621.2005.tb09979.x.
Kutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2021). Impact of different microwave treatments on food texture. Journal Of Texture Studies. doi: 10.1111/jtxs.12635.
Liao, H., Zhong, K., Hu, X., & Liao, X. (2019). Effect of high pressure carbon dioxide on alkaline phosphatase activity and quality characteristics of raw bovine milk. Innovative Food Science & Emerging Technologies, 52, 457-462. doi: 10.1016/j.ifset.2019.02.005.
Manzocco, L., Plazzotta, S., Spilimbergo, S., & Nicoli, M. (2017). Impact of high-pressure carbon dioxide on polyphenoloxidase activity and stability of fresh apple juice. LWT - Food Science and Technology, 85, 363-371. doi: 10.1016/j.lwt.2016.11.052.
Marszałek, K., Doesburg, P., Starzonek, S., Szczepańska, J., Woźniak, Ł., & Lorenzo, J. et al. (2019). Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. Journal of CO2 Utilization, 29, 46-56. doi: 10.1016/j.jcou.2018.11.007.
Marszałek, K., Krzyżanowska, J., Woźniak, Ł., & Skąpska, S. (2017). Kinetic modelling of polyphenol oxidase, peroxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT - Food Science and Technology, 85, 412-417. doi: 10.1016/j.lwt.2016.11.018.
Martín-Muñoz, D., Tirado, D., & Calvo, L. (2022). Inactivation of Legionella in aqueous media by high-pressure carbon dioxide. The Journal of Supercritical Fluids, 180, 105431. doi: 10.1016/j.supflu.2021.105431.
Melo Silva, J., Rigo, A., Dalmolin, I., Debien, I., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control, 29(1), 76-81. doi: 10.1016/j.foodcont.2012.05.068.
Michelino, F., Zambon, A., Vizzotto, M., Cozzi, S., & Spilimbergo, S. (2018). High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization, 24, 516-521. doi: 10.1016/j.jcou.2018.02.010.
Murtaza, A., Iqbal, A., Linhu, Z., Liu, Y., Xu, X., Pan, S., & Hu, W. (2019). Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innovative Food Science & Emerging Technologies, 54, 43-50. doi: 10.1016/j.ifset.2019.03.001.
Murtaza, A., Iqbal, A., Marszałek, K., Iqbal, M., Waseem Ali, S., & Xu, X. et al. (2020). Enzymatic, Phyto-, and Physicochemical Evaluation of Apple Juice under High-Pressure Carbon Dioxide and Thermal Processing. Foods, 9(2), 243. doi: 10.3390/foods9020243.
Nakamura, K., Enomoto, A., Fukushima, H., Nagai, K., & Hakoda, M. (1994). Disruption of Microbial Cells by the Flash Discharge of High-pressure Carbon Dioxide. Bioscience, Biotechnology, and Biochemistry, 58(7), 1297-1301. doi: 10.1271/bbb.58.1297.
Paniagua-Martínez, I., Mulet, A., García-Alvarado, M., & Benedito, J. (2018). Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies, 47, 362-370. doi: 10.1016/j.ifset.2018.03.024.
Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids, 66, 359-371. doi: 10.1016/j.supflu.2011.07.007.
Porębska, I., Sokołowska, B., Skąpska, S., & Rzoska, S. (2017). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control, 73, 24-30. doi: 10.1016/j.foodcont.2016.06.005.
Rao, L., Bi, X., Zhao, F., Wu, J., Hu, X., & Liao, X. (2015). Effect of High-pressure CO2 Processing on Bacterial Spores. Critical Reviews in Food Science and Nutrition, 56(11), 1808-1825. doi: 10.1080/10408398.2013.787385.
Rao, L., Wang, Y., Chen, F., & Liao, X. (2016). The Synergistic Effect of High Pressure CO2 and Nisin on Inactivation of Bacillus subtilis Spores in Aqueous Solutions. Frontiers in Microbiology, 07. doi: 10.3389/fmicb.2016.01507.
Roobab, U., Shabbir, M., Khan, A., Arshad, R., Bekhit, A., & Zeng, X. et al. (2021). High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. LWT, 149, 111828. doi: 10.1016/j.lwt.2021.111828.
Santos Júnior, L., Heberle, I., Aquino, A., Oliveira, J., Ribeiro, D., Medeiros, J., & Amante, E. (2021). High-pressure supercritical carbon dioxide uses to inactivate Escherichia coli in pumpkin puree. Research, Society and Development, 10(4), e6510413853. doi: 10.33448/rsd-v10i4.13853.
Sehrawat, R., Kaur, B., Nema, P., Tewari, S., & Kumar, L. (2020). Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Science and Biotechnology, 30(1), 19-35. doi: 10.1007/s10068-020-00831-6.
Sikin, A., Walkling-Ribeiro, M., & Rizvi, S. (2016). Synergistic effect of supercritical carbon dioxide and peracetic acid on microbial inactivation in shredded Mozzarella-type cheese and its storage stability at ambient temperature. Food Control, 70, 174-182. doi: 10.1016/j.foodcont.2016.05.050.
Silva, E., Alvarenga, V., Bargas, M., Sant'Ana, A., & Meireles, M. (2018). Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. The Journal of Supercritical Fluids, 139, 97-104. doi: 10.1016/j.supflu.2018.05.013.
Silva, E., Arruda, H., Pastore, G., Meireles, M., & Saldaña, M. (2020b). Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 63, 104942. doi: 10.1016/j.ultsonch.2019.104942.
Silva, E., Meireles, M., & Saldaña, M. (2020a). Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science & Technology, 97, 381-390. doi: 10.1016/j.tifs.2020.01.025.
Smigic, N., Djekic, I., Tomic, N., Udovicki, B., & Rajkovic, A. (2019). The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. British Food Journal, 121(3), 815-834. doi: 10.1108/bfj-03-2018-0168.
Soares, D., Lerin, L., Cansian, R., Oliveira, J., & Mazutti, M. (2013). Inactivation of Listeria monocytogenes using supercritical carbon dioxide in a high-pressure variable-volume reactor. Food Control, 31(2), 514-518. doi: 10.1016/j.foodcont.2012.11.045.
Soares, G., Learmonth, D., Vallejo, M., Davila, S., González, P., Sousa, R., & Oliveira, A. (2019). Supercritical CO2 technology: The next standard sterilization technique?. Materials Science and Engineering: C, 99, 520-540. doi: 10.1016/j.msec.2019.01.121.
Spilimbergo, S., & Bertucco, A. (2003). Non-thermal bacterial inactivation with dense CO2. Biotechnology and Bioengineering, 84(6), 627-638. doi: 10.1002/bit.10783.
Spilimbergo, S., Bertucco, A., Basso, G., & Bertoloni, G. (2005). Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment. Biotechnology and Bioengineering, 92(4), 447-451. doi: 10.1002/bit.20606.
Torabian, G., Bahramian, B., Zambon, A., Spilimbergo, S., Adil, Q., & Schindeler, A. et al. (2018). A hybrid process for increasing the shelf life of elderberry juice. The Journal of Supercritical Fluids, 140, 406-414. doi: 10.1016/j.supflu.2018.07.023.
Valley, G., & Rettger, L. (1927). The influence of carbon dioxide on bacteria. Journal of Bacteriology, 14(2), 101-137. doi: 10.1128/jb.14.2.101-137.1927
Wang, W., Rao, L., Wu, X., Wang, Y., Zhao, L., & Liao, X. (2020). Supercritical Carbon Dioxide Applications in Food Processing. Food Engineering Reviews, 13(3), 570-591. doi: 10.1007/s12393-020-09270-9.
Yang, D., Wang, Y., Zhao, L., Rao, L., & Liao, X. (2022). Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Research International, 151, 110895. doi: 10.1016/j.foodres.2021.110895.
Yu, T., Niu, L., & Iwahashi, H. (2020). High-Pressure Carbon Dioxide Used for Pasteurization in Food Industry. Food Engineering Reviews, 12(3), 364-380. doi: 10.1007/s12393-020-09240-1.
Zhang, J., Iqbal, A., Murtaza, A., Zhou, X., Xu, X., Pan, S., & Hu, W. (2021). Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. Journal of CO2 Utilization, 46, 101467. doi: 10.1016/j.jcou.2021.101467.
Zhang, Z., Wang, L., Zeng, X., Han, Z., & Brennan, C. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13. doi: 10.1111/ijfs.13903.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Alexia dos Santos Oliveira; Hélia Lucila Malta

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.