Optimization of Photo-fentom like process for the remediation of sodium diclofenac residues in water samples

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34184

Keywords:

Advanced Oxidative Process; Diclofenac sodium; Environmental contamination; Spectrophotometry; Water.

Abstract

Worldwide, there is an increasing incidence of contaminants in aqueous matrices, among them, antibiotics, pesticides and pharmaceutical products. This problem, coupled with the occurrence of these pollutants at trace levels, creates unique challenges for the analytical detection and performance evaluation of the removal of these contaminants from water. The purpose of this experiment was to optimize the operational conditions of the Photo-fentom like process of sodium diclofenac residues by Response Surface Methodology (RSM), based on analysis in aqueous solution. The drug was determined via UV-Vis spectrophotometry using a 23 factorial design with a central point to evaluate the degradation of the sodium diclofenac.  The design was composed of two levels and three factors: (X1) Irradiation time, ranging from 2 to 4 h; (X2) Hydrogen peroxide content, ranging from 1 to 7%; and (X3) Fe2+ concentration, ranging from 25 to 100 mg L-1. According to the levels defined for each parameter, the optimized methodology showed that the best degradation of the drug was achieved by combining 2 h of irradiation, 1% Hydrogen peroxide solution and 25 mg L-1 of solution containing Fe2+, where 97.04% of drug degradation was achieved. From ANOVA it could be inferred that the concentration of Fe2+ (p = 0.13044) and the interaction irradiation time with Fe2+ concentration (X1X3) (p = 0.0439) had the highest significance in the degradation process. The experimental planning was useful to indicate the region of maximum degradation, therefore, the methodology was suitable for degradation of residues of this drug in water samples.

References

Acuña, V., Ginebreda, A., Mor, J. R., Petrovic, M., Sabater, S., Sumpter, J., Barceló, D. (2015). Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example. Environment International, 85, 327–333. https://doi.org/10.1016/j.envint.2015.09.023

Ammar, H. B.; Brahim, M. Ben; Abdelhédi, R.; Samet, Y. (2016). Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 420, 222–227. http://dx.doi.org/10.1016/j.molcata.2016.04.029

Aydin, H.; Melike, K.; Semra, K.; Alireza, K.; Ozkan A.; Bilal Y. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53–62. https://doi.org/10.1016/j.jenvman.2018.01.014

Alygizakis, N. A.; Gago-Ferrero, P.; Borova, V. L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N. S. (2016). Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Science of the Total Environment, 541, 1097–1105. https://doi.org/10.1016/j.scitotenv.2015.09.145

Ameta, R. Chohadia A. K. Jain, A. Punjabi, P. B. (2018). Fenton and Photo-Fenton Processes. Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology, 3, 49-87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6

Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água. 11 (2), 387-401.

Baloyi, J.; Ntho, T. & Moma, J. (2018). A Novel Synthesis Method of Al/Cr Pillared Clay and its Application in the Catalytic Wet Air Oxidation of Phenol. Catalysis Letters, 148 (12), 3655–3668. https://doi.org/10.1007/s10562-018-2579-x

Bel Hadjltaief, H.; Costa, P. da; Beaunier, P.; Gálvez, M. E.; Zina, Ben, M. (2014). Fe-clay-plate as a heterogeneous catalyst in photo-Fenton oxidation of phenol as probe molecule for water treatment. Applied Clay Science, 91-92, 46–54. https://doi.org/10.1016/j.clay.2014.01.020

Carra, I.; Sánchez Pérez, J. A.; Malato, S.; Autin, O.; Jefferson, B.; Jarvis, P. (2015). Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 264, 690–696. https://doi.org/10.1016/J.CEJ.2014.11.142

Chan, J. Y. T.; Ang, S. Y.; Ye, E. Y.; Sullivan, M.; Zhang, J., & Lin, M. (2015). Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets. Physical Chemistry Chemical Physics, 17, 38. https://doi.org/10.1039/C5CP03332B

Cihanoglu, A.; Gunduz, G.; Dukkanci, M. (2015). Degradation of acetic acid by heterogeneous Fenton-like oxidation over iron-containing ZSM-5 zeolites. Applied Catalysis B: Environmental, 165, 687–699. https://doi.org/10.1016/j.apcatb.2014.10.073

Davididou, K.; Monteagudo, J. M.; Chatzisymeon, E.; Dur An, A.; Exposito, A. J. (2017). Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate. Separation and Purification Technology, 172, 227–235. https://doi.org/10.1016/j.seppur.2016.08.021

Faust, B. C.; Hoigné, J. (1990) Photolysis of Fe (III)-hidroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment, 24 (1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q

Hahladakis, J. N et al (2018). An overview of chemical additivies present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazard Materials, 344, 179- 199. https://doi.org/10.1016/j.jhazmat.2017.10.014

Hu, J.; Zhai, C.; Zhu, M. (2021). Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction. Chinese Chemical Letters, 32, 1348-1358. https://doi.org/10.1016/j.cclet.2020.09.049

Karabegović, I.T., S.S. Stojicević, D.T. Velicković, N.C. Nikolić and M.L. Lazic. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429-436. http://dx.doi.org/10.1016/j.seppur.2013.10.021

Li, X.; Huang, S.; Xu, H.; Deng, Y.; Wang, Z.; Liu, Z-H. (2021). Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system. Chinese Chemical Letters, 1-5. https://doi.org/10.1016/j.cclet.2021.07.058

Lima, S. L.; Rodrigues, M. J. R.; Silva, T. R.; Novais, C.; Naves, P. (2015). Uso indiscriminado de diclofenaco de potássio pela população idosa na cidade de Anápolis, no estado de Goiás, Brasil em 2014. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(2), 179-188.

Lonappan, L.; Brar, S. K.; Das, R. K.; Verma, M.; Surampalli, R. Y. (2016). Diclofenac and its transformation products: Environmental occurrence and toxicity - A review, 96, 127-138. https://doi.org/10.1016/j.envint.2016.09.014

Martins, L. M.; Silva, C. E.; Moita Neto, J. M.; Lima, A. S.; Moreira, R. F. P. M. (2011) Application of Fenton, photo-Fenton and UV/H2O2 in treating synthetic textile wastewater containing the dye Black Biozol UC. Engenharia Sanitária e Ambiental, 16, 261-270.

Santos, L. G., S. S.; Bergold, A. M. (2007). Caracterização e qualificação de diclofenaco de sódio como padrão secundário. Latin American Journal of Pharmacy, 26, 355-361.

Silva, D. F.; Azevedo, E. B.; Rezende, M. O. O. (2016). Optimization of Microwave-Assisted Extraction of a Bioherbicide from Canavalia ensiformis Leaves. American Journal of Environmental Sciences, 12 (1), 27-32. https://doi.org/10.3844/ajessp.2016.27.32

Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001

Silva, D. F.; Landgraf, M. D.; Rezende, M. O. O. (2017). Assessment of Triazine Herbicides in Soil by Microwave-assisted Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry Detection. Journal of Chemistry and Chemical Engineering, 11, 1-8. https://doi.org/10.17265/1934-7375/2017.01.001

Song, J.; Li, D.; Liu, C.; Zhang, Y. (2011). Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innovative Food Science and Emerging Technologies, 12, 282-287. https://doi.org/10.1016/j.ifset.2011.03.001

Sun, M.; Liu, H.; Qu, J.; Li, J. (2016). Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 6, 1600087. https://doi.org/10.1002/aenm.201600087

Thanhmingliana, D. T. (2015). Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micro-pollutant diclofenac sodium. Chemical Engineering Journal. 263, 364-373. https://doi.org/10.1016/j.cej.2014.10.102

Tong, W.; Xie, Y.; Luo, H.; Niu, J.; Ran, W.; Hu, W.; Wang, L.; Yao, C.; Liu, W.; Zhang, Y.; Wang, Y. (2019). Phosphorus-rich microorganism-enabled synthesis of cobalt phosphide/carbon composite for bisphenol A degradation through activation of peroxymonosulfate. Chemical Engineering Journal. 378. 122187. https://doi.org/10.1016/j.cej.2019.122187

Vieira, F. S.; Santos, M. A. B. O setor farmacêutico no Brasil sob as Lentes da Conta- Satélite de Saúde, Texto para discussão, Instituto de Pesquisa Econômica e Aplicada, Brasília, 2020.

Zhao, W.; Yu, Z.; Liu, J.; Yu, Y.; Yin, Y.; Lin, S.; Chen, F. (2011). Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design. Journal of the Science of Food and Agriculture, 91, 2201-2209. https://doi.org/10.1002/jsfa.4440

Downloads

Published

07/09/2022

How to Cite

COSTA, N. M. .; OLIVEIRA, L. R. de .; LIMA, B. R. B. .; RODRIGUES, E. H. C. .; SANTOS, A. F. dos .; MOURA, A. R. L. de .; GOMES, W. C. .; MIRANDA, R. de C. M. de .; SILVA, M. R. C. .; SILVA, D. F. da . Optimization of Photo-fentom like process for the remediation of sodium diclofenac residues in water samples. Research, Society and Development, [S. l.], v. 11, n. 12, p. e72111234184, 2022. DOI: 10.33448/rsd-v11i12.34184. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34184. Acesso em: 25 apr. 2024.

Issue

Section

Exact and Earth Sciences