Predictive models in the ultrasonic disinfection of hospital-effluents: a review and suggestion for future research

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34364

Keywords:

Ultrasonic waves; Hospital laundry; Water disinfection; Experimental planning.

Abstract

At the end of this review on applications of ultrasonic waves in the inactivation of microorganisms in hospital laundry effluents, the fourth type of predictive model is proposed, based on the application characteristics of the experimental plans. The number of works for the disinfection of wastewater by ultrasound waves (US) associated with other techniques or individuals has been increasing. The use of ultrasound to produce lethal effects on microorganisms is attractive because it is considered a "green" technology in that it involves sound energy and does not require additional chemicals, or a very small amount. Also, the US as a tool for water reuse processes - operates at low pressure and temperature and does not produce toxic or greenhouse gases. Hospital laundry effluents are characterized by different microorganisms, a fact that can hinder the application of conventional physical-chemical technologies. To contribute to future developments in the application of ultrasound (US), this work uses some typical US applications in the disinfection of aqueous effluents. To propose strategies for carrying out new works, comments are made regarding an approach oriented towards new advances based on the need to interrelate the variables involved in the studies, at the same time that these variables are correlated with the rate of inactivation. For this, it is discussed the predictive models and their contributions, according to the number of factors that should be involved for a better understanding of the rate of microbial inactivation.

References

Amabilis-Sosa, L. E., Vázquez-López, M., Rojas, J. L. G., Roé-Sosa, A., & Moeller-Chávez, G. E. (2018). Efficient bacteria inactivation by ultrasound in municipal wastewater. Environments, 5(4), 47.

Amin, M. M., Hashemi, H., Bovini, A. M., & Hung, Y. T. (2013). A review on wastewater disinfection. International Journal of Environmental Health Engineering, 2(1), 22.

Ansari, F., Ghaedi, M., Taghdiri, M., & Asfaram, A. (2016). Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method. Ultrasonics sonochemistry, 33, 197-209.

Arhouma, T. A., & Hassan, M. S. (2016). Principal Components Analysis the Biochemical Compounds Extracted from Dates Using Three Mixture Design and Identification by GC-MS. International Journal of Science and Research (IJSR).

Ashfaq, M. Y., & Qiblawey, H. (2018). Laundry wastewater treatment using ultrafiltration under different operating conditions. In AIP Conference Proceedings (2022(1), 020002). AIP Publishing LLC.

Baranyi, J., & Roberts, T. A. (1995). Mathematics of predictive food microbiology. International journal of food microbiology, 26(2), 199-218.

Belda-Galbis, C. M., Pina-Pérez, M. C., Espinosa, J., Marco-Celdrán, A., Martínez, A., & Rodrigo, D. (2014). Use of the modified Gompertz equation to assess the Stevia rebaudiana Bertoni antilisterial kinetics. Food microbiology, 38, 56-61.

Blume, T., & Neis, U. (2004). Improved wastewater disinfection by ultrasonic pre-treatment. Ultrasonics sonochemistry, 11(5), 333-336.

Cervantes-Elizarrarás, A., Piloni-Martini, J., Ramírez-Moreno, E., Alanís-García, E., Güemes-Vera, N., Gómez-Aldapa, C. A., Zafra-Rojas, Q.Y., & del Socorro Cruz-Cansino, N. (2017). Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrasonics sonochemistry, 34, 371-379.

Chatterjee, T., Chatterjee, B. K., Majumdar, D., & Chakrabarti, P. (2015). Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochimica et Biophysica Acta (BBA)-General Subjects, 1850(2), 299-306.

Ciabattia, I., Cesaro, F., Faralli, L., Fatarella, E., & Tognotti, F. (2009). Demonstration of a treatment system for purification and reuse of laundry wastewater. Desalination, 245(1-3), 451-459.

da Silva, B., Kupski, L., & Badiale-Furlong, E. (2019). Central composite design-desirability function approach for optimum ultrasound-assisted extraction of daidzein and genistein from soybean and their antimycotoxigenic potential. Food Analytical Methods, 12(1), 258-270.

de Andrade Filho, M. P., de Araújo, G. P., dos Santos, L. B., Junior, L. P. P., da Costa Neto, B. F., Sarubbo, L. A., & dos Santos, V. A. (2022). Comparison between effects of manothermosonication and isolated ultrasonic techniques on microbial inactivation of a hospital laundry effluent. Research, Society and Development, 11(10), e379111032792-e379111032792.

Drakopoulou, S., Terzakis, S., Fountoulakis, M. S., Mantzavinos, D., & Manios, T. (2009). Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics sonochemistry, 16(5), 629-634.

Fang, Y., Shimizu, S., Yamamoto, T., & Komarov, S. (2018). Generation of OH radical by ultrasonic irradiation in batch and circulatory reactor. In IOP Conference Series: Earth and Environmental Science (120(1), 012019). IOP Publishing.

Ganesan, B., Martini, S., Solorio, J., & Walsh, M. K. (2015). Determining the effects of high intensity ultrasound on the reduction of microbes in milk and orange juice using response surface methodology. International journal of food science, 2015.

Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., & Lewis, G. D. (2014). Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water research, 60, 93-104.

Gil, M. M., Miller, F. A., Brandão, T. R., & Silva, C. L. (2017). Mathematical models for prediction of temperature effects on kinetic parameters of microorganisms’ inactivation: Tools for model comparison and adequacy in data fitting. Food and Bioprocess Technology, 10(12), 2208-2225.

Hawrylik, E. (2019). Ultrasonic disintegration of bacteria contained in treated wastewater. Journal of Ecological Engineering, 20(9).

Huang, L. (2013). Optimization of a new mathematical model for bacterial growth. Food Control, 32(1), 283-288.

Ince, N. H. (2018). Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrasonics sonochemistry, 40, 97-103.

Joyce, E., Al‐Hashimi, A., & Mason, T. J. (2011). Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry. Journal of applied microbiology, 110(4), 862-870.

Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics sonochemistry, 16(5), 655-659.

Kumar, R., Yadav, N., Rawat, L., & Goyal, M. K. (2014). Effect of two waves of ultrasonic on waste water treatment. Journal of Chemical Engineering & Process Technology, 5(3), 1.

Leighton, T. G. (2007). What is ultrasound?. Progress in biophysics and molecular biology, 93(1-3), 3-83.

Li, J., Ahn, J., Liu, D., Chen, S., Ye, X., & Ding, T. (2016). Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and environmental microbiology, 82(6), 1828-1837.

Madge, B. A., & Jensen, J. N. (2002). Disinfection of wastewater using a 20‐kHz ultrasound unit. Water environment research, 74(2), 159-169.

Nuñez, L., & Moretton, J. (2007). Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Brazilian Journal of Microbiology, 38, 644-648.

Oscar, T. P. (2020). Validation software tool (ValT) for predictive microbiology based on the acceptable prediction zones method. International Journal of Food Science & Technology, 55(7), 2802-2812.

Patil, M. N., & Pandit, A. B. (2007). Cavitation–a novel technique for making stable nano-suspensions. Ultrasonics Sonochemistry, 14(5), 519-530.

Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., & Chandler, R. (1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. Journal of bacteriology, 154(3), 1222-1226.

Rodriguez-Martinez, V., Velázquez, G., Altaif, R. D. J. R., Fagotti, F., Welti-Chanes, J., & Torres, J. A. (2020). Deterministic and probabilistic predictive microbiology-based indicator of the listeriosis and microbial spoilage risk of pasteurized milk stored in residential refrigerators. LWT, 117, 108650.

Rosso, L., Lobry, J. R., & Flandrois, J. P. (1993). An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. Journal of theoretical biology, 162(4), 447-463.

Shabbir, M. A.,Ahmed, H.,Maan, A. A.,Rehman, A.,Afraz, M. T.,Iqbal, M. W.,Khan, I. M.,Amir, R. M.,Ashraf, W.Khan, M. R., &Aadil, R. M. (2021). Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. Food Sci. Technol. 41(2),279-294.

Souza, R. C., Silva, T. L. D., Santos, A. Z. D., & Tavares, C. R. G. (2019). Wastewater treatment of hospital laundry by advanced oxidation process: UV/H 2 O 2. Engenharia Sanitaria e Ambiental, 24, 601-611.

Vercammen, D., Logist, F., & Impe, J. V. (2014). Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization. BMC systems biology, 8(1), 1-22.

Verlicchi, P., Al Aukidy, M., & Zambello, E. (2015). What have we learned from worldwide experiences on the management and treatment of hospital effluent?—An overview and a discussion on perspectives. Science of the Total Environment, 514, 467-491.

Vetchapitak, T., Shinki, T., Sasaki, S., Taniguchi, T., Luangtongkum, T., & Misawa, N. (2020). Evaluation of chemical treatment combined with vacuum and ultrasonication with a water resonance system for reducing Campylobacter on naturally contaminated chicken carcasses. Food Control, 112, 107087.

Whiting, R. C. (1993). A classification of models in predictive microbiology-a reply to KR Davey. Food Microbiol., 10, 175-177.

Yusof, N. S. M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., & Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonics sonochemistry, 29, 568-576.

Zotesso, J. P., Cossich, E. S., Janeiro, V., & Tavares, C. R. G. (2017). Treatment of hospital laundry wastewater by UV/H2O2 process. Environmental Science and Pollution Research, 24(7), 6278-6287.

Zou, H., & Tang, H. (2019). Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water, 11(2), 258.

Zupanc, M., Pandur, Ž., Perdih, T. S., Stopar, D., Petkovšek, M., & Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57, 147-165.

Downloads

Published

11/09/2022

How to Cite

ANDRADE FILHO, M. P. de; BRANDÃO, Y. F. F. .; NASCIMENTO, B. M. do .; SILVA, R. de C. F. S. da .; ARAÚJO, G. P. de .; SANTOS, L. B. dos .; PEDROSA JUNIOR, L. P. .; SARUBBO, L. A. .; BENACHOUR, M. .; SANTOS, V. A. dos . Predictive models in the ultrasonic disinfection of hospital-effluents: a review and suggestion for future research . Research, Society and Development, [S. l.], v. 11, n. 12, p. e200111234364, 2022. DOI: 10.33448/rsd-v11i12.34364. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34364. Acesso em: 24 nov. 2024.

Issue

Section

Health Sciences