Evaluation of liposomal particle size in different assays

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.35104

Keywords:

Characterization; Lecithin; Lyophilization; Sizes.

Abstract

Liposomes composed of rice (RL) and soy (SL) lecithins were produced by reverse phase evaporation, using as a solvent for solubilization of rice and soy lecithins the Chloroform P.A. With this, the objective was to perform different assays to evaluate the average size and polydispersity index of liposomes with and without the incorporation of the phenolic compound extracted from Spirulina LEB - 18. The pure liposomes were characterized in size distribution, polydispersity index, and ζ-potential. Liposomes in different assays, on the other hand: A) Liposomes samples with and without phenolic extracts of microalgae were freeze-dried in a freeze-dryer (model LIOB 003, Biosan), were subjected to solubilization in Ultrapure water for characterization. B) Liposome samples with and without phenolic extracts of microalgae were made by centrifugation at 10,000 g for 30 minutes. C) Liposomes samples with and without phenolic extracts of microalgae were submitted to centrifugation at 10,000 g for 30 min and filtration through a membrane filter of 0.22 (Filter For Syringe 0.22 a Kasvi) and 0.45 µm pore size (Membrane Millipore). Then these assays were subjected to size and polydispersity evaluation. Therefore, it was verified that assay C obtained the best sizes. With the results obtained, it is possible to emphasize the role of liposomes as an essential tool for enhancing the antioxidant profile of phenolic extracts of Spirulina sp. LEB-18.

References

Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), 1688–1713. https://doi.org/10.1016/j.addr.2006.09.017

Ahlin, P., Kristl, J., Kristl, A., & Vrečer, F. (2002). Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. International Journal of Pharmaceutics, 239(1), 113–120. https://doi.org/10.1016/S0378-5173(02)00076-5

Ahmed, K. S., Hussein, S. A., Ali, A. H., Korma, S. A., Lipeng, Q., & Jinghua, C. (2019). Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. Journal of Drug Targeting, 27(7), 742–761. https://doi.org/10.1080/1061186X.2018.1527337

Araújo, R. S. (2009). Desenvolvimento, caracterização e liofilização de nanopartículas e encapsulamento de antibiótico de uso veterinário. 131.

Assis, L. M. de, Machado, A. R., Motta, A. de S. da, Costa, J. A. V., & Soares, L. A. de S. (2014a). Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa. https://doi.org/10.4236/ampc.2014.41002

Assis, L. M. de, Machado, A. R., Motta, A. de S. da, Costa, J. A. V., & Soares, L. A. de S. (2014b). Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa. https://doi.org/10.4236/ampc.2014.41002

Barroso, L. A. (2020). Otimização dos parâmetros de extração a frio (Cold brew) de café arábica da região de Minas Gerais para produção de cafés solúveis liofilizados. http://acervo.ufvjm.edu.br/jspui/handle/1/2199

Benedetti, N. I. G. de M. (2017). Estudo da encapsulação do voriconazol em lipossomas: Obtenção, caracterização e estudo de estabilidade. http://repositorio.bc.ufg.br/tede/handle/tede/9055

Bolson, S. N. (2015). Desenvolvimento tecnológico de nanocápsulas para a liberação controlada do neuroprotetor vimpocetina. http://repositorio.ufsm.br/handle/1/17509

Bredarioli, P. A. P. (2021). Avaliação in vivo do potencial de lipossomas contendo insulina para terapia tópica da doença do olho seco [Text, Universidade de São Paulo]. https://doi.org/10.11606/D.60.2021.tde-29092021-071109

Carvalho, A. L. D. (2021). Técnicas de micro/nanoencapsulação de produtos naturais extraído do cerrado: Oleo de buriti. http://bdm.ufmt.br/handle/1/1929

da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284–292. https://doi.org/10.1016/j.tifs.2010.03.003

Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2020). Chapter 8—Biomedical and food applications of biopolymer-based liposome. Em K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations (pp. 167–192). Elsevier. https://doi.org/10.1016/B978-0-12-816897-4.00008-4

Editora, A. (2018). Impactos das tecnologias nas ciências biológicas e da saúde (1.a ed.). Antonella Carvalho de Oliveira. https://doi.org/10.22533/at.ed.998181406

Esposto, B. S., Jauregi, P., Tapia-Blácido, D. R., & Martelli-Tosi, M. (2021). Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science & Technology, 108, 40–48. https://doi.org/10.1016/j.tifs.2020.12.003

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004

Júnior, S., & Alencar, J. G. de. (2021). Desenvolvimento, caracterização e avaliação in vitro da atividade antibacteriana de formulações lipossomais. http://www.repositorio.ufc.br/handle/riufc/56607

Lacatusu, I., Badea, N., Stan, R., & Meghea, A. (2012). Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol. Nanotechnology, 23, 455702. https://doi.org/10.1088/0957-4484/23/45/455702

Luiz, M. T. (2022). Desenvolvimento e caracterização de lipossomas contendo docetaxel: Um potencial sistema para o tratamento de glioblastoma multiforme [Text, Universidade de São Paulo]. https://doi.org/10.11606/T.60.2022.tde-17052022-091137

Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A., & Cerqueira, M. A. (2019a). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 120, 656–667. https://doi.org/10.1016/j.foodres.2018.11.023

Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A., & Cerqueira, M. A. (2019b). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 120, 656–667. https://doi.org/10.1016/j.foodres.2018.11.023

MALVERN. (2022). MALVERN, Material Talks. Disponível em: <http://www.materialstalks.com/blog/2014/01/23/intensity-volume-number-which-size-is-correct/>. Acesso em: 23 jun. 2022.

Mertins, O. (2008). Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana. https://lume.ufrgs.br/handle/10183/14354

Nemen, D., & Lemos-Senna, E. (2011). Preparação e caracterização de suspensões coloidais de nanocarreadores lipídicos contendo resveratrol destinados à administração cutânea. Química Nova, 34(3), 408–413. https://doi.org/10.1590/S0100-40422011000300008

Neves, M. T., Santos, F. R. dos, Gonçalves, D. J. R., Fernandes, J. G., Justino, H. de F. M., Júnior, B. R. de C. L., & Vieira, É. N. R. (2021). Uso da tecnologia de lipossomas no encapsulamento de compostos bioativos—Revisão. The Journal of Engineering and Exact Sciences, 7(4), Art. 4. https://doi.org/10.18540/jcecvl7iss4pp13295-01-20e

Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible Film and Coating Applications in Fruits and Vegetables. Alınteri Zirai Bilimler Dergisi, 221–226. https://doi.org/10.28955/alinterizbd.368362

Pereira, et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/ Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pereira, E. F. S. (2015). Liofilização de nanopartículas para aplicação de produtos inovadores em oncologia. https://estudogeral.sib.uc.pt/handle/10316/31060

Pettinato, M., Trucillo, P., Campardelli, R., Perego, P., & Reverchon, E. (2020). Bioactives extraction from spent coffee grounds and liposome encapsulation by a combination of green technologies. Chemical Engineering and Processing - Process Intensification, 151, 107911. https://doi.org/10.1016/j.cep.2020.107911

Rodrigues, B. V. (2017, setembro 26). Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. https://estudogeral.sib.uc.pt/handle/10316/83224

Santos, L. S. dos, Medeiros, J. S., Toledo, A. M. N., Viana, L. F., Machado, M. I. R., & Machado, A. R. (2020). Processo de encapsulação de extrato aquoso liofilizado e não liofilizado de mangaba em vesículas lipídicas / Encapsulation process of lyophilized and non-lyophilized aqueous extract of mangaba in lipid vesicles. Brazilian Journal of Development, 6(1), Art. 1. https://doi.org/10.34117/bjdv6n1-158

Souza, M. M. de. (2012). Potencial antifúngico, antioxidante e inibidor da produção de aflatoxina por extratos fenólicos de Chlorella sp. E Spirulina platensis. http://repositorio.furg.br/handle/1/6183

Toledo, A. M. N. de. (2015). Encapsulação do óleo essencial de laranja em nanopartículas de quitosana: Desenvolvimento e avaliação da citotoxidade in vitro do produto final. http://repositorio.furg.br/handle/1/8836

Toribio Espinoza, J. (2017). Desenvolvimento tecnológico e caracterização de lipossomas carregados com nanoparticulas de prata obtidas por síntese verde. http://tede2.uepg.br/jspui/handle/prefix/2503

Vauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26(5), 1025–1058. https://doi.org/10.1007/s11095-008-9800-3

Wang, Y., Ye, A., Hou, Y., Jin, Y., Xu, X., Han, J., & Liu, W. (2022). Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends in Food Science & Technology, 119, 36–44. https://doi.org/10.1016/j.tifs.2021.11.016

Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159–167. https://doi.org/10.1016/j.jff.2017.04.021

Published

10/01/2023

How to Cite

MACHADO , A. R. .; MACHADO, M. I. R. .; SOUZA-SOARES, L. A. de . Evaluation of liposomal particle size in different assays . Research, Society and Development, [S. l.], v. 12, n. 1, p. e24512135104, 2023. DOI: 10.33448/rsd-v12i1.35104. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35104. Acesso em: 22 dec. 2024.

Issue

Section

Agrarian and Biological Sciences