Evaluation of liposomal particle size in different assays
DOI:
https://doi.org/10.33448/rsd-v12i1.35104Keywords:
Characterization; Lecithin; Lyophilization; Sizes.Abstract
Liposomes composed of rice (RL) and soy (SL) lecithins were produced by reverse phase evaporation, using as a solvent for solubilization of rice and soy lecithins the Chloroform P.A. With this, the objective was to perform different assays to evaluate the average size and polydispersity index of liposomes with and without the incorporation of the phenolic compound extracted from Spirulina LEB - 18. The pure liposomes were characterized in size distribution, polydispersity index, and ζ-potential. Liposomes in different assays, on the other hand: A) Liposomes samples with and without phenolic extracts of microalgae were freeze-dried in a freeze-dryer (model LIOB 003, Biosan), were subjected to solubilization in Ultrapure water for characterization. B) Liposome samples with and without phenolic extracts of microalgae were made by centrifugation at 10,000 g for 30 minutes. C) Liposomes samples with and without phenolic extracts of microalgae were submitted to centrifugation at 10,000 g for 30 min and filtration through a membrane filter of 0.22 (Filter For Syringe 0.22 a Kasvi) and 0.45 µm pore size (Membrane Millipore). Then these assays were subjected to size and polydispersity evaluation. Therefore, it was verified that assay C obtained the best sizes. With the results obtained, it is possible to emphasize the role of liposomes as an essential tool for enhancing the antioxidant profile of phenolic extracts of Spirulina sp. LEB-18.
References
Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), 1688–1713. https://doi.org/10.1016/j.addr.2006.09.017
Ahlin, P., Kristl, J., Kristl, A., & Vrečer, F. (2002). Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. International Journal of Pharmaceutics, 239(1), 113–120. https://doi.org/10.1016/S0378-5173(02)00076-5
Ahmed, K. S., Hussein, S. A., Ali, A. H., Korma, S. A., Lipeng, Q., & Jinghua, C. (2019). Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. Journal of Drug Targeting, 27(7), 742–761. https://doi.org/10.1080/1061186X.2018.1527337
Araújo, R. S. (2009). Desenvolvimento, caracterização e liofilização de nanopartículas e encapsulamento de antibiótico de uso veterinário. 131.
Assis, L. M. de, Machado, A. R., Motta, A. de S. da, Costa, J. A. V., & Soares, L. A. de S. (2014a). Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa. https://doi.org/10.4236/ampc.2014.41002
Assis, L. M. de, Machado, A. R., Motta, A. de S. da, Costa, J. A. V., & Soares, L. A. de S. (2014b). Development and Characterization of Nanovesicles Containing Phenolic Compounds of Microalgae Spirulina Strain LEB-18 and Chlorella pyrenoidosa. https://doi.org/10.4236/ampc.2014.41002
Barroso, L. A. (2020). Otimização dos parâmetros de extração a frio (Cold brew) de café arábica da região de Minas Gerais para produção de cafés solúveis liofilizados. http://acervo.ufvjm.edu.br/jspui/handle/1/2199
Benedetti, N. I. G. de M. (2017). Estudo da encapsulação do voriconazol em lipossomas: Obtenção, caracterização e estudo de estabilidade. http://repositorio.bc.ufg.br/tede/handle/tede/9055
Bolson, S. N. (2015). Desenvolvimento tecnológico de nanocápsulas para a liberação controlada do neuroprotetor vimpocetina. http://repositorio.ufsm.br/handle/1/17509
Bredarioli, P. A. P. (2021). Avaliação in vivo do potencial de lipossomas contendo insulina para terapia tópica da doença do olho seco [Text, Universidade de São Paulo]. https://doi.org/10.11606/D.60.2021.tde-29092021-071109
Carvalho, A. L. D. (2021). Técnicas de micro/nanoencapsulação de produtos naturais extraído do cerrado: Oleo de buriti. http://bdm.ufmt.br/handle/1/1929
da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284–292. https://doi.org/10.1016/j.tifs.2010.03.003
Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2020). Chapter 8—Biomedical and food applications of biopolymer-based liposome. Em K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations (pp. 167–192). Elsevier. https://doi.org/10.1016/B978-0-12-816897-4.00008-4
Editora, A. (2018). Impactos das tecnologias nas ciências biológicas e da saúde (1.a ed.). Antonella Carvalho de Oliveira. https://doi.org/10.22533/at.ed.998181406
Esposto, B. S., Jauregi, P., Tapia-Blácido, D. R., & Martelli-Tosi, M. (2021). Liposomes vs. chitosomes: Encapsulating food bioactives. Trends in Food Science & Technology, 108, 40–48. https://doi.org/10.1016/j.tifs.2020.12.003
Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
Júnior, S., & Alencar, J. G. de. (2021). Desenvolvimento, caracterização e avaliação in vitro da atividade antibacteriana de formulações lipossomais. http://www.repositorio.ufc.br/handle/riufc/56607
Lacatusu, I., Badea, N., Stan, R., & Meghea, A. (2012). Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol. Nanotechnology, 23, 455702. https://doi.org/10.1088/0957-4484/23/45/455702
Luiz, M. T. (2022). Desenvolvimento e caracterização de lipossomas contendo docetaxel: Um potencial sistema para o tratamento de glioblastoma multiforme [Text, Universidade de São Paulo]. https://doi.org/10.11606/T.60.2022.tde-17052022-091137
Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A., & Cerqueira, M. A. (2019a). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 120, 656–667. https://doi.org/10.1016/j.foodres.2018.11.023
Machado, A. R., Pinheiro, A. C., Vicente, A. A., Souza-Soares, L. A., & Cerqueira, M. A. (2019b). Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 120, 656–667. https://doi.org/10.1016/j.foodres.2018.11.023
MALVERN. (2022). MALVERN, Material Talks. Disponível em: <http://www.materialstalks.com/blog/2014/01/23/intensity-volume-number-which-size-is-correct/>. Acesso em: 23 jun. 2022.
Mertins, O. (2008). Estudos físico-químicos e estruturais de lipossomas compósitos de fosfatidilcolina e quitosana. https://lume.ufrgs.br/handle/10183/14354
Nemen, D., & Lemos-Senna, E. (2011). Preparação e caracterização de suspensões coloidais de nanocarreadores lipídicos contendo resveratrol destinados à administração cutânea. Química Nova, 34(3), 408–413. https://doi.org/10.1590/S0100-40422011000300008
Neves, M. T., Santos, F. R. dos, Gonçalves, D. J. R., Fernandes, J. G., Justino, H. de F. M., Júnior, B. R. de C. L., & Vieira, É. N. R. (2021). Uso da tecnologia de lipossomas no encapsulamento de compostos bioativos—Revisão. The Journal of Engineering and Exact Sciences, 7(4), Art. 4. https://doi.org/10.18540/jcecvl7iss4pp13295-01-20e
Okcu, Z., Yavuz, Y., & Kerse, S. (2018). Edible Film and Coating Applications in Fruits and Vegetables. Alınteri Zirai Bilimler Dergisi, 221–226. https://doi.org/10.28955/alinterizbd.368362
Pereira, et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/ Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Pereira, E. F. S. (2015). Liofilização de nanopartículas para aplicação de produtos inovadores em oncologia. https://estudogeral.sib.uc.pt/handle/10316/31060
Pettinato, M., Trucillo, P., Campardelli, R., Perego, P., & Reverchon, E. (2020). Bioactives extraction from spent coffee grounds and liposome encapsulation by a combination of green technologies. Chemical Engineering and Processing - Process Intensification, 151, 107911. https://doi.org/10.1016/j.cep.2020.107911
Rodrigues, B. V. (2017, setembro 26). Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. Desenvolvimento e caracterização de complexos polímero-lipossoma (CPLs) para sistemas inteligentes de libertação controlada. https://estudogeral.sib.uc.pt/handle/10316/83224
Santos, L. S. dos, Medeiros, J. S., Toledo, A. M. N., Viana, L. F., Machado, M. I. R., & Machado, A. R. (2020). Processo de encapsulação de extrato aquoso liofilizado e não liofilizado de mangaba em vesículas lipídicas / Encapsulation process of lyophilized and non-lyophilized aqueous extract of mangaba in lipid vesicles. Brazilian Journal of Development, 6(1), Art. 1. https://doi.org/10.34117/bjdv6n1-158
Souza, M. M. de. (2012). Potencial antifúngico, antioxidante e inibidor da produção de aflatoxina por extratos fenólicos de Chlorella sp. E Spirulina platensis. http://repositorio.furg.br/handle/1/6183
Toledo, A. M. N. de. (2015). Encapsulação do óleo essencial de laranja em nanopartículas de quitosana: Desenvolvimento e avaliação da citotoxidade in vitro do produto final. http://repositorio.furg.br/handle/1/8836
Toribio Espinoza, J. (2017). Desenvolvimento tecnológico e caracterização de lipossomas carregados com nanoparticulas de prata obtidas por síntese verde. http://tede2.uepg.br/jspui/handle/prefix/2503
Vauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26(5), 1025–1058. https://doi.org/10.1007/s11095-008-9800-3
Wang, Y., Ye, A., Hou, Y., Jin, Y., Xu, X., Han, J., & Liu, W. (2022). Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends in Food Science & Technology, 119, 36–44. https://doi.org/10.1016/j.tifs.2021.11.016
Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159–167. https://doi.org/10.1016/j.jff.2017.04.021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Adriana Rodrigues Machado ; Maria Inês Rodrigues Machado; Leonor Almeida de Souza-Soares
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.