Zinc in soil, plant and human health: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.3544

Keywords:

Soil fertility; Plant nutrition; Biofortification; Micronutrient; Food security.

Abstract

It is estimated that 17.3% of the world population is at risk for Zn deficiency, and annually, about half a million children under five years of age die from causes related to Zn malnutrition. Low-cost strategy to increase Zn intake by humans is to increase the consumption of biofortified crops. Biofortification comprises the process for increasing contents of one or more nutrients in the edible parts of agricultural crops in order to increase their nutritional value. For biofortification to reach one billion people by 2030, mutual efforts must be added. Among them, policies must place more emphasis on agriculture role in improving health. Governments and institutions must include biofortification on food security policy, and food processors and others responsible for production chain must include biofortified crops in their product lines. The objective of this study was to carry out a bibliographic review to elucidate the dynamics of Zn in soil, the essential function of Zn in plant yield, the plant role in transfer Zn to human body, the importance of Zn in the human health and current measures that have been taken to mitigate Zn malnutrition in the world.

Author Biography

Fabrício William Ávila, Universidade Estadual do Centro-Oeste

Agronomist with a MSc in Soil Science at Federal University of Lavras (Lavras, Minas Gerais, Brazil). PhD in Soil Science (Soil Fertility and Plant Nutrition) at Federal University of Lavras (2013) and Robert W. Holley Center for Agriculture and Health - USDA/Cornell University (Ithaca, NY, USA). Currently, he is an active member of the Brazilian Soil Science Society and Professor at State University of Mid West (UNICENTRO, Irati, Paraná, Brazil). His scientific production is mainly focused in the field of Soil Fertility and Plant Nutrition. 

References

Abdoli, M., Esfandiari, E., Mousavi, S. B., & Sadeghzadeh, B. (2014). Effects of foliar application of zinc sulfate at different phenological stages on yield formation and grain zinc content of bread wheat (cv. Kohdasht). Azarian Journal of Agriculture, 1(1), 11-16.

Alloway, B. J. (2008). Zinc in Soils and crop nutrition. (2a ed.). Brussels and Paris: IZA and IFA.

Alonso, F. P., Arias, J. S., Fernandez, R. O., Fernandez, P. G., & Serrano R. E. (2006). Agronomic implications of the supply of lime and gypsium by-products to palexerults from western spain. Soil Science, 171(1), 65-81.

Andreini, C., Banci, L., Bertini, I., Rosato, A. (2006). Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research, 5(1), 196–201.

Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 601–639.

Bechoff, A., Taleon, V., Carvalho, L. M. J., Carvalho, J. L. V., & Boy, E. (2017, abr). Micronutrient (provitamin A and iron/zinc) retention in biofortified crops, African Journal of Food, Agriculture, Nutrition and Development, 17(2), 11893-11904.

Behera, S., Singh, M., Singh, K., & Todwal, S. (2011). Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 162, 242-250.

Beyer, P. (2010). Golden rice and ‘Golden’ crops for human nutrition. New Biotechnology, Oxford, 27(5), 478-481.

Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., De Onis, M., Ezzati, M., ... & Maternal and Child Undernutrition Study Group. (2008). Maternal and child undernutrition: global and regional exposures and health consequences. The lancet, 371(9608), 243-260.

Blair, M. W. (2013). Mineral biofortification strategies for food staples: the example of common bean. Journal of Agricultural and Food Chemistry, 61(35), 8287-8294.

Boldrin, P. F., Faquin, V., Ramos, S. J., Guilherme, L. R. G., Bastos, C. E. A., Carvalho, G. S., & Costa, E. T. D. S. (2012). Selenato e selenito na produção e biofortificação agronômica com selênio em arroz. Pesquisa agropecuária brasileira, 47(6), 831-837.

Bortolon, L., & Gianello, C. (2009). Disponibilidade de cobre e zinco em solos do sul do Brasil. Revista Brasileira de Ciência do Solo, 33(3), 647–658.

Bouis, H. (2018). Reducing mineral and vitamin deficiencies through biofortification: Progress under HarvestPlus. In Hidden hunger: strategies to improve nutrition quality (Vol. 118, pp. 112-122). Karger Publishers.

Bouis, H. E., Hotz, C., Mcclafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin, 32(1)(Suppl.), 31–40.

Bouis, H. E., & Saltzman, A. (2017 – January). Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security, 12, 49–58.

Bouis, H. E., & Welch, R. M. (2010 – March). Biofortification - A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, Madison, 50(1), 20-32.

Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New phytologist, 173(4), 677-702.

Brown, K. H., Peerson, J. M., Rivera, J., & Allen, L. H. (2002). Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 75(6), 1062-1071.

Brown, P. (2009). Development of a Model System for Testing Foliar Fertilizers, Adjuvants and Growth Stimulants. Visalia: California Department of Food and Agriculture Fertilizer Research and Educatione.

Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 302, 1–17.

Cakmak, I., Kalayci, M., Kaya, Y., Torun, A. A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., & Horst, W. J. (2010). Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry, 58(16), 9092-9102.

Cakmak, I., Marschner, H., & Bangerth, F. (1989). Effect of zinc nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris L.). Journal of Experimental Botany, 40, 405-412.

Canadian Food Inspection Agency (CFIA). Guidance Document Repository (GDR). Food Labelling for Industry. Health Claims. Nutrient Function Claims. Acessado em 04 sept. 2018 em, http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/health-claims/eng/1392834838383/1392834887794?chap=9#s16c9

Chaves, L. H. G., De Souza, R. S., & Tito, G. A. (2008). Adsorção de zinco em Argissolos do Estado da Paraíba: Efeito do pH. Revista Ciência Agrônomica, 39(4), 511–516.

Cominetti, C., Reis, B. Z., & Cozzolino, S. M. F. (2017). Funções Plenamente Reconhecidas de Nutrientes – Zinco. ILSI BRASIL – International Life Sciences Institute do Brasil. 7, 36.

Cryptococcus, P. D. E., Sanfelice, N., Filobasidiaceae, T., Excretas, E. M., & Na, D. E. P. (2013). Zinco: Necessário para a produção de milho em um solo de vársea. Revista de educação, ciência e tecnologia do IFAM, 7, 30–41.

Dechen, A. R., & Nachtigall, G. R. (2007). Elementos requeridos à nutrição de plantas. In: Novais, R. F., Alvarez, V. V. H., Barros, N. F., Fontes, R. L. F., Cantarutti, R. B., & Neves, J. C. L. Fertilidade do solo (91-132). Viçosa: Sociedade Brasileira de Ciências do Solo.

Dinakar, C., Djilianov, D., & Bartels, D. (2012). Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Science, 182, 29-41.

Drissi, S., Aït Houssa, A., Bamouh, A. & Benbella, M. (2017). Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and outdoor container conditions. Journal of the Saudi Society of Agricultural Sciences, 16(2), 145–153.

Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton, FL: CRC Press.

Fernandes, M. S., Souza, S. R. de, & Santos, L. A. (Ed.). (2018). Nutrição Mineral de Plantas (2a ed.). Viçosa: Sociedade Brasileira de Ciência do Solo.

Gianquinto, G., Rayyan, A. A., Tola, L. D., Piccotino, D., & Pezzarossa, B. (2000). Interaction effects of phosphorus and zinc on photosynthesis, growth and Yield of dwarf bean grown in two environments. Plant and Soil, Dordrecht, 220(1-2), 219-228.

Gibson, R. (2012 – March). Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant Soil, Netherlands, 361, 291-299.

Gil, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909-930.

Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz‐Monasterio, I., Bouis, H. E., Bonierbale, M., & Meisner, C. A. (2007). Nutritious subsistence food systems. Advances in agronomy, 92, 1-74.

Gregory, P. J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E. J. M., & Broadley, M. R. (2017 – March). Approaches to reduce zinc and iron deficits in food systems. Global Food Security, 15, 1–10.

Han, X., Li, X., Uren, N., & Tang, C. (2011). Zinc fractions and availability to soybeans in representative soils of Northeast China. Journal of soils and sediments, 11(4), 596-606.

Hu, Z., Shen, Y., Shen, F., & Su, X. (2009). Effects of feeding Clostera anachoreta on hydrogen peroxide accumulation and activities of peroxidase, catalase, and ascorbate peroxidase in Populus simonii x P. pyramidalis ‘Opera 8277’ leaves. Acta Physiologiae Plantarum, 31, 995-1002.

Joint Health Claims Initiative (JHCI) to the Food Standards Agency. (2003). Final Technical Re¬port, 34-44.

Joy, E. J., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D., ... & Fairweather‐Tait, S. J. (2014). Dietary mineral supplies in Africa. Physiologia Plantarum, 151(3), 208-229.

Kirkby, E. A., & Römheld, V. (2007). Micronutrientes na fisiologia de plantas: funções, absorção e mobilidade. Informações agronômicas, 118(2), 1-24.

Kumssa, D. B., Joy, E. J., Ander, E. L., Watts, M. J., Young, S. D., Walker, S., & Broadley, M. R. (2015 - september). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific reports, 5(1), 10974.

Kutman, U. B., Yildiz, B., Ozturk, L., & Cakmak, I. (2010). Biofortification of Durum Wheat with Zinc Through Soil and Foliar Applications of Nitrogen. Cereal Chem, 87(1), 1–9.

Levenson, C. W., & Morris, D. (2011). Zinc and neurogenesis: making new neurons from nevelopment to adulthood. American Society of Nutrition, Bethesda, 2, 96-100.

Li, H. Y., Zhu, Y. G., Smith, S. E., & Smith, F. A. (2003). Phosphorus- zinc interactions in two barley cultivars differing in phosphorus and zinc efficiencies. Journal of Plant Nutrition, New Yok, 26(5), 1085-1099.

Linhares, L. A., Egreja Filho, F. B., Bellis, V. M. De, Santos, E. A. Dos, & Ianhez, R. (2010). Utilização dos modelos de Langmuir e de Freundlich na adsorção de cobre e zinco em solos Brasileiros. Acta Agronômica, 59(3), 303–315.

Livingstone, C. (2015 – June). Zinc: Physiology, Deficiency, and Parenteral Nutrition, Nutrition in Clinical Practice, 30(3), 371–382.

Loftas, T., Ross, J., & Burles, D. (1995). Dimensions of need: an atlas of food and agriculture. Food and Agriculture Organization of the United Nations, Rome.

Malavolta, E. (2006). Manual de nutrição mineral de plantas. São Paulo: Agronômica Ceres.

Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., & ZOU, C. (2014). Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. Journal of Soil Acience and Plant Nutrition, 14(2), 459–470.

Marenco, R. A., & Lopes, N. F. (2009). Fisiologia Vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral (3a ed.). Viçosa: Editora UFV.

Marinho, M. L., & Igue, K. (1972). Factors affecting zinc absorption by corn from volcanic ash soils. Agronomy Journal, 64, 3-8.

Marschner, H. (2012) Mineral nutrition of higher plants (3a ed.). London: Academic Press.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410.

Moloto, R. M., Moremi, L. H., Soundy, P., & Maseko, S. T.. (2018 – October). Biofortification of common bean as a complementary approach to addressing zinc deficiency in South Africans. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 68(7), 575–584.

Moraes, M. F., Pascoalino, J. A. L., Alves, S. J. F., Nutti, M. R., & de Carvalho, J. L. V. (2012). Biofortificação - alternativa à segurança nutricional. Informações Agronômicas, Piracicaba, (140), 9-15.

Mori, R., Ota, E., Middleton, P., Tobe-Gai, R., Mahomed, K., & Bhutta, Z. A. (2012). Zinc supplementation for improving pregnancy and infant outcome (7a ed.). Cochrane Database of Systematic Reviews.

Mousavi, S. R., Galavi, M., & Rezaei, M. (2012). The interaction of zinc with other elements in plants : a review. International Journal of Agriculture and Crop Sciences, 4(24), 1881–1884.

Muner, L. H. D., Ruiz, H. A., Venegas, V. H., Neves, J. C., Freire, F. J., & Freire, M. B. D. S. (2011). Disponibilidade de zinco para milho em resposta à localização de fósforo no solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(1), 29-38.

Oliveira, F. C. De, Gredson, C., Benett, S., Santiago, K., Benett, S., Maria, L., & Vieira, C. (2017). Diferentes doses e épocas de aplicação de zinco na cultura da soja. Revista de Agricultura Neotropical, 28–35.

Oliveira, N. P. (2015). Variação genotípica envolvendo Fe, Zn e fitatos em soja visando a biofortificação (Tese de doutorado). Universidade Federal de Lavras, Lavras, MG, Brasil.

Organização das Nações Unidas (ONU). (2017). População mundial atingiu 7,6 bilhões de habitantes. Acessado em 29 jul. 2019 em, https://news.un.org/pt/story/2017/06/1589091-populacao-mundial-atingiu-76-bilhoes-de-habitantes.

Organização das Nações Unidas (ONU). (2019). Transformando nosso mundo : a agenda 2030 para o desenvolvimento sustentável. Acessado em 13 jun. 2019 em, https://nacoesunidas.org/pos2015/agenda2030/.

Orioli Jr., V., Prado, R. de M., Leonel, C. L., Cazetta, D. A., Silveira, C. M. da, Queiroz, R. J. B., & Bastos, J. C. H. A. da G. (2008). Modos de aplicação de zinco na nutrição e na produção de massa seca de plantas de trigo. Revista de la ciencia, 8(1), 28–36.

Pereira, T. C., Saron, M. L. G., Carvalho, W. A. de, Vilela, M. M., Hoehr, N. F., & Hessel, G. (2011). Research on zinc blood levels and nutritional status in adolescents with autoimmune hepatitis. Arquivos de Gastroenterologia, 48(1), 62–65.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1º ed, Vol. 1). Santa Maria, RS: UFSM, NTE. Acesso em 27 de maio de 2020, em http://repositorio.ufsm.br/handle/1/15824

Pérez-Novo, C., Bermúdez-Couso, A., López-Periago, E., Fernández-Calviño, D., & Arias-Estévez, M. (2011). Zinc adsorption in acid soils: influence of phosphate. Geoderma, 162(3-4), 358-364.

Petry, N., Boy, E., Wirth, J. P., & Hurrell, R. F. (2015). The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7(2), 1144-1173.

Phattarakul, N.; Rerkasem, B.; Li, L. J.; Wu, L. H.; Zou, C. Q.; Ram, H.; Sohu, V. S.; Kang, B. S.; Surek, H.; Kalayci, M.; Yazici, A.; Zhang, F. S.; Cakmak, I. (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil, 361(1–2), 131–141.

Prasad, A. S. (2001). Discovery of human zinc deficiency: Impact on human health. Nutrition, 17, 685–687.

Ram, H., Rashid, A., Zhang, W., Duarte, A.P., Phattarakul, N., Simunji, S., ... & Cakmak, I. (2016). Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant and soil, 403(1-2), 389-401.

Ramos, S. J., Ávila, F. W., Boldrin, P. F., Pereira, F. J., Castro, E. M., Faquin, V., ... & Guilherme, L. R. G. (2012). Response of brachiaria grass to selenium forms applied in a tropical soil. Plant, Soil and Environment, 58(11), 521-527.

Ramos, S. J., Rutzke, M. A., Hayes, R. J., Faquin, V., Guilherme, L. R. G., & Li, L. (2011). Selenium accumulation in lettuce germplasm. Planta, 233(4), 649-660.

Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., ... & Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment, 56(12), 584-588.

Rehman, A., Farooq, M., Ozturk, L., Asif, M., & Siddique, K. H. (2018). Zinc nutrition in wheat-based cropping systems. Plant and Soil, 422(1-2), 283-315.

Rengel, Z. (2015). Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition, 15(2), 397–409.

Rodgers, A. , Vaughan, P., Prentice, T., Edejer, T. T. -T., Evans;, D.; Lowe, J. (2002). World Health Report 2002. Geneva: World Health Organization.

Rosolem, C. A., & Franco, G. R. (2000). Translocação de zinco e crescimento radicular em milho. Revista Brasileira de Ciência do Solo, 24(4), 807–8014.

Sadeghzadeh, B. (2013). A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition, 13, 905-927.

Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: progress toward a more nourishing future. Global Food Security, 2(1), 9-17.

Santos, G. C. G. Dos. (2005). Comportamento de B, Zn, Mn, e Pb em solo contaminado sob cultivo de plantas e adição de fontes de matéria orgânica como amenizantes do efeito tóxico. Universidade de São Paulo (USP).

Santos, H. C., Fraga, V. S., Raposo, R. W., & Pereira, W. E. (2009). Cu e Zn na cultura do sorgo cultivado em três classes de solos: I. Crescimento vegetativo e produção. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(2), 125-130.

Shahzad, Z., Rouached, H., & Rakha, A. (2014). Combating mineral malnutrition through iron and zinc biofortification of cereals. Comprehensive Reviews in Food Science and Food Safety, 13(3), 329-346.

Shekhar, C. (2013). Hidden hunger: addressing micronutrient deficiences using improved crop varieties. Chemistry and Biology, Cambridge, 20, 1305-1306.

Singh, J. P., Karamanos, R. E., & Stewart, J. W. B. (1988). The mechanism of phosphorus-inducedzinc deficiency in bean (Phaseolus vulgaris L.). Canadian Journal of Soil Science, Ottawa, 68(2), 345-358.

Souza, G. A. (2013a). Biofortificação da cultura do trigo com zinco, selêno e ferro: explorando o germoplasma brasileiro (Tese - Doutorado em Ciência do Solo) Universidade Federal de Lavras, Lavras, MG, Brasil.

Souza, G. A., de Carvalho, J. G., Rutzke, M., Albrecht, J. C., Guilherme, L. R. G., & Li, L. (2013b). Evaluation of germplasm effect on Fe, Zn and Se content in wheat seedlings. Plant science, 210, 206-213.

Stein, A. J. (2014). Rethinking the measurement of undernutrition in a broader health context: Should we look at possible causes or actual effects? Global Food Security, 3(3–4), 193–199.

Taiz, L., & Zeiger, E. (2009). Fisiologia Vegetal (4a ed.) Porto Alegre: Artmed.

Tunes, L. M. de, Pedroso, D. C., Tavares, L. C., Barbieri, A. P. P., Barros, A. C. S. A., & Muniz, M. F. B. (2012). Tratamento de sementes de trigo com zinco: armazenabilidade, componentes do rendimento e teor do elemento nas sementes. Ciência Rural, 42(7), 1141–1146.

Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., & Singh, R. P. (2014). Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 59(3), 365-372.

Wei, Y., Shohag, M. J. I., & Yang, X. (2012). Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization. Plos One, 7(9), 1–10.

Welch, R. M., House, W. A., Ortiz-Monasterio, I., & Cheng, Z. (2005). Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. Journal of agricultural and food chemistry, 53(6), 2176-2180.

Wessells, K. R., & Brown, K. H. (2012). Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. Plos One, 7(11), 1–11.

White, P. J., Bradshaw, J. E., Finlay, M., Dale, B., Ramsay, G., Hammond, J. P., & Broadley, M. R. (2009). Relationships between yield and mineral concentrations in potato tubers. HortScience, 44(1), 6-11.

White, P. J., & Broadley, M. R. (2009 – January). Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, Cambridge, 182, 49-84.

White, P. J., & Broadley, M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10(12), 586–593.

White, P. J., & Broadley, M. R. (2011). Physiological limits to zinc biofortification of edible crops. Frontiers in Plant Science, 2, 1-11.

World Health Organization (WHO). (2002). The world health report 2002: reducing risks, promoting healthy life. Geneva: World Health Organization.

World Health Organization (WHO). (2006). The world health report 2006: working toghether for health (237 p.) Geneva: World Health Organization.

Zaman, Q. U., Aslam, Z., Yaseen, M., Ihsan, M. Z., Khaliq, A., Fahad, S., ... & Naeem, M. (2018). Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Archives of Agronomy and Soil Science, 64(2), 147-161.

Zhang, Y. Q., Deng, Y., Chen, R. Y., Cui, Z. L., Chen, X. P., Yost, R., ... & Zou, C. Q. (2012). The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 361(1-2), 143-152.

Zhao, K., & Selim, H. M. (2010 – April). Adsorption-desorption kinetics of Zn in soils: influence of phosphate. Soil Science, Baltimore, 175(4), 145-153.

Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R. Z., … & Cakmak, I. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 361(1-2), 119-130.

Published

16/06/2020

How to Cite

KACHINSKI, W. D.; VIDIGAL, J. C. B.; ÁVILA, F. W. Zinc in soil, plant and human health: a review. Research, Society and Development, [S. l.], v. 9, n. 7, p. e827973544, 2020. DOI: 10.33448/rsd-v9i7.3544. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3544. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences