Physiopathological aspects involved in the symptomatology of COVID-19 and its consequences: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35441

Keywords:

SARS-CoV-2; Cytokyne storm; ACE2.

Abstract

Introduction: SARS-CoV-2 is a betacoronavirus belonging to the Nidovirales order of the Coronaviridae family. It is a virus that became evolutionarily able to interact with transmembrane enzymes (ACE 2) occuring in human body's cells and, therefore, replicating inside them. SARS-CoV-2 might produce a cytokyne storm on human's organism, causing several systemic damages to the patients. Objective: Describe the main aspects about viral characterization, physiopathology, systemic consequences, as well as the infection's diagnosis. Methodology: It is about a literature review concerning academical articles available on the following database: PubMed, SciElo, UPTODATE and LILACS, using the following descriptors: COVID-19, SARS-CoV-2 and COVID-19 pandemic. Discussion: SARS-CoV-2's cell's entrance may generate multiple inflammatory processes on human's organism. Since there is ACE 2 receptors on many organs cells, the virus is able to produce systemic injuries. Lung lesions can be identified on the main imaging tests there is, thus helping to comprehend the prognosis and treatment of the patients. Due to the virus agression against the organism, many patients complain about some symptoms that remain even after infection's resolution. Final notes: Throughout this study, it was possible to understand historical aspects over coronavirus, its variants, the SARS-CoV-2-induced cytokyne storm, as well as systemic repercussions during and after the infection and the available diagnostic methods too.

References

Anka, A. U., Tahir, M. I., Abubakar, S. D., Alsabbagh, M., Zian, Z., Hamedifar, H., Sabzevari, A., & Azizi, G. (2020). Coronavirus disease 2019 (COVID‐19) : An overview of the immunopathology, serological diagnosis and management. Scandinavian Journal Of Immunology. 93(4). http://dx.doi.org/10.1111/sji.12998.

Batista, L. D. S., & Kumada, K. M. O. (2021). Análise metodológica sobre as diferentes configurações da pesquisa bibliográfica. Rev. Bras. de Iniciação Científica (RBIC). 8, 1-17. https://periodicoscientificos.itp.ifsp.edu.br/index.php/rbic/article/view/113.

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W-C., Uhl, S., Hoagland, D., Møller, R., Jordan, T. X., Oishi, K., Panis, M., & Sachs, D. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 181(5), 1036-45. http://dx.doi.org/10.1016/j.cell.2020.04.026.

Cao, J., Li, L., Xiong, L., Wang, C., Chen, Y., & Zhang, X. (2022). Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. Phytomedicine Plus. 2(2), 100252-100252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895682/.

Carvalho, L. S. D., da Silva Júnior, R. T., Oliveira, B. V. S., de Miranda, Y. S., Rebouças, N. L. F., Loureiro, M. S., Pinheiro, S. L. R., da Silva, R. S., Correia, P. V. S. L. M., & Silva, M. J. S. (2021). Highlighting COVID-19: What the imaging exams show about the disease. World Journal Of Radiology. 13(5), 122-136. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188839/.

Camporota, L., Cronin, J. N., Busana, M., Gattinoni, L., & Formenti, F. (2021). Pathophysiology of coronavirus-19 disease acute lung injury. Current Opinion In Critical Care. 28(1), 9-16. http://dx.doi.org/10.1097/mcc.0000000000000911.

Chen, T-H., Hsu, M-T., Lee, M-Y., & Chou, C-K. (2022). Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses. 14(6), 1188-1188. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228950/.

Cordeiro, A. M., de Oliveira, G. M., Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Rev. Col. Bras. Cir. 34 (6). https://doi.org/10.1590/S0100-69912007000600012.

Dandel, M. (2021). Heart–lung interactions in COVID-19: prognostic impact and usefulness of bedside echocardiography for monitoring of the right ventricle involvement. Heart Failure Reviews. 27(4), 1325-1339. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052527/.

Dotan, A., David, P., Arnheim, D., & Shoenfeld, Y. (2022). The autonomic aspects of the post-COVID-19 syndrome. Autoimmunity Reviews. 21(5), 103071-103071. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8848724/.

Duerr, G. D., Heine, A., Hamiko, M., Zimmer, S., Luetkens, J. A., Nattermann, J., Rieke, G., Isaak, A., Jehle, J., & Held, S. A. E. (2020). Parameters predicting COVID-19-induced myocardial injury and mortality. Life Sciences. 260, 118400-118400. http://dx.doi.org/10.1016/j.lfs.2020.118400.

Forchette, L., Sebastian, W., & Liu, T. (2021). A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Current Medical Science. 41(6), 1037-1051. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267225/.

Goldin, C. J., Vázquez, R., Polack, F. P., & Alvarez-Paggi, D. (2020). Identifying pathophysiological bases of disease in COVID-19. Translational Medicine Communications. 5(1), 15-15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506209/.

Gómez, J., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado-Rodríguez, L., Lopez-Alonso, I., Hermida, T., Enriquez, A. I., Herrero, P., Melón, S., Alvarez-Argüelles, M. E., Boga, J. A., Rojo-Alba, S., Cuesta-Llavona, E., Alvarez, V., Lorca, R., & Coto, E. (2020). Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene. 762. https://www.sciencedirect.com/science/article/pii/S037811192030771X.

Guo, L., Ren, L., Yang, S., Xiao, M., Chang, D., Yang, F., Dela Cruz, C. S., Wang, Y., Wu, C., & Xiao, Y. (2020). Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clinical Infectious Diseases. 71(15), 778-785. http://dx.doi.org/10.1093/cid/ciaa310.

Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Péré, H., Charbit, B., Bondet, V., & Chenevier-Gobeaux, C. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 369(6504), 718-724. http://dx.doi.org/10.1126/science.abc6027.

Hamouche, W., Bisserier, M., Brojakowska, A., Eskandari, A., Fish, K., Goukassian, D. A., & Hadri, L. (2021). Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. Journal of Molecular And Cellular Cardiology. 153, 72-85. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833205/.

Hilton, J., Boyer, N., Nadim, M. K., Forni, L. G., & Kellum, J. A. (2022). COVID-19 and Acute Kidney Injury. Critical Care Clinics. 38(3), 473-489. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743571/.

Hong, J., Jhun, H., Choi, Y-O., Taitt, A. S., Bae, S., Lee, Y., Song, C-S., Yeom, S. C., & Kim, S. (2021). Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Network. 21(1), 8-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937506/.

Huynh, T., Sanchez-Flores, X., Yau, J., & Huang, J. T. (2022). Cutaneous Manifestations of SARS-CoV-2 Infection. American Journal of Clinical Dermatology. 23(3), 277-286. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8897723.

Jansen, J., Reimer, K. C., Nagai, J. S., Varghese, F. S., Overheul, G. J., de Beer, M., Roverts, R., Daviran, D., Fermin, L. A. S., & Willemsen, B. (2022). SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell. 29(2), 217-231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709832.

Jansen, L., Tegomoh, B., Lange, K., Showalter, K., Figliomeni, Jon., Abdalhamid, B., Iwen, P. C., Fauver, J., Buss, B., & Donahue, M. (2021). Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) Variant Cluster – Nebraska, November-December 2021. Morbidity And Mortality Weekly Report. 70, 01-03. https://www.cdc.gov/mmwr/volumes/70/wr/pdfs/mm705152e3-H.pdf.

Joshee, S., Vatti, N., & Chang, C. (2022). Long-Term Effects of COVID-19. Mayo Clinic Proceedings. 97(3), 579-599. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752286.

Kim, J. S., Lee, J. Y., Yang, J. W., Lee, K. H., Effenberger, M., Szpirt, W., Kronbichler, A., & Shin, J. (2021). Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 11(1), 316-329. http://dx.doi.org/10.7150/thno.49713.

Lacedonia, D., Quarato, C. M. I., Mirijello, A., Trovato, G. M., Colle, A. D., Rea, G. Scioscia, G., Barbaro, M. P. F., & Sperandeo, M. (2021). COVID-19 Pneumonia: the great ultrasonography mimicker. Frontiers In Medicine. 8, 709402-709402. https://doi.org/10.3389/fmed.2021.709402.

Lana, R. M., Coelho, F. C., Gomes, M. F. D. C., Cruz, O. G., Bastos, L. S., Villela, D. A. M., & Codeço, C. T. (2020). Emergência do novo coronavírus (SARS-CoV-2) e o papel de uma vigilância nacional em saúde oportuna e efetiva. Cadernos de Saúde Pública. 36(3), 01-05. http://dx.doi.org/10.1590/0102-311x00019620.

Mcgonagle, D., Sharif, K., O'regan, A., & Bridgewood, C. (2020). The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews. 19(6), 102537-102537. http://dx.doi.org/10.1016/j.autrev.2020.102537.

Meidaninikjeh, S., Sabouni, N., Marzouni, H. Z., Bengar, S., Khalili, A., & Jafari, R. (2021). Monocytes and macrophages in COVID-19: friends and foes. Life Sciences. 269, 119010-119010. http://dx.doi.org/10.1016/j.lfs.2020.119010.

Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., & Esmaeilzadeh, A. (2020). COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 23(02), 1-11. https://doi.org/10.1002/jgm.3303.

Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: their roles in pathogenesis. Journal Of Microbiology, Immunology And Infection. 54(2), 159-163 http://dx.doi.org/10.1016/j.jmii.2020.03.022.

Nogueira, J. V. D., & da Silva, C. M. (2020). Conhecendo a origem do SARS-COV-2 (COVID 19). Revista Saúde e Meio Ambiente – Resma. 11(2), 15-124. https://periodicos.ufms.br/index.php/sameamb/article/view/10321.

Petrey, A. C., Qeadan, F., Middleton, E. A., Pinchuk, I. V., Campbell, R. A., & Beswick, E. J. (2020). Cytokine release syndrome in COVID‐19: innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. Journal Of Leukocyte Biology 109(1), 55-66. http://dx.doi.org/10.1002/jlb.3cova0820-410rrr.

Pontone, G., Scafuri, S., Mancini, M. E., Agalbato, C., Guglielmo, M., Baggiano, A., Muscogiuri, G., Fusini, L., Andreini, D., & Mushtaq, S. (2021). Role of computed tomography in COVID-19. Journal Of Cardiovascular Computed Tomography. 15(1), 27-36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473149.

Rai, P., Kumar, B. K., Deekshit, V. K., Karunasagar, I., & Karunasagar, I. (2021). Detection technologies and recent developments in the diagnosis of COVID-19 infection. Applied Microbiology And Biotechnology. 105(2), 441-455. https://doi.org/10.1007/s00253-020-11061-5 .

Salian, V. S., Wright, J. A., Vedell, P. T., Nair, S., Li, C., Kandimalla, M., Tang, X., Porquera, E. M. C., Kalari, R. K., & Kandimalla, K. K. (2021). COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Molecular Pharmaceutics 18 (3), 754-771. https://doi.org/10.1021/acs.molpharmaceut.0c00608.

Singh, S. P., Pritam, M., Pandey, B., & Yadav, T. P. (2020). Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. J Med Virol. 93, 275-299. https://doi.org/10.1002/jmv.26254.

Souza, L. C. D., da Silva, T. O., Pinheiro, A. R. D. S., & dos Santos, F. D. S. (2021). SARS-CoV, MERS-CoV e SARS-CoV-2: a narrative review of the main Coronaviruses of the century. Brazilian Journal Of Health Review. 4(1), 1419-1439. https://doi.org/10.34119/bjhrv4n1-120.

Trougakos, I. P., Stamatelopoulos, K., Terpos, E., Tsitsilonis, O. E., Aivalioti, E., Paraskevis, D. Kastritis, E., Pavlakis, G. N., & Dimopoulos, M. A. (2021). Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal Of Biomedical Science. 28 (1), 9-9. https://doi.org/10.1186/s12929-020-00703-5.

Upadhya, S., Rehman, J., Malik, A. B., & Chen, S. (2022). Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology (Bethesda). 37(2), 88-100. https://doi.org/10.1152/physiol.00033.2021.

Valverde, A. J. S., Temoche, C. E. M., Caicedo, C. R. C., Hernández, N. B. A., & Padilla, T. M. T. (2021). COVID-19: fisiopatología, historia natural y diagnóstico. Revista Eugenio Espejo. 15(2), 98-114. https://doi.org/10.37135/ee.04.11.13.

Yesudhas, D., Srivastava, A., & Gromiha, M. M. (2020). COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection. 49(2), 199-213.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472674/.

Zhang, R., Sun, C., Chen, X., Han, Y., Zang, W., Jiang, C., Wang, J., & Wang, J. (2022). COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. Journal Of Inflammation Research. 15, 2181-2198. https://doi.org/10.2147/JIR.S353467.

Published

06/10/2022

How to Cite

SALES, P. H. de; HERY, S. K.; BESSON, J. C. F. Physiopathological aspects involved in the symptomatology of COVID-19 and its consequences: a literature review. Research, Society and Development, [S. l.], v. 11, n. 13, p. e238111335441, 2022. DOI: 10.33448/rsd-v11i13.35441. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35441. Acesso em: 12 nov. 2024.

Issue

Section

Health Sciences