Use of unconventional technologies to extract bioactive compounds from fruit and vegetable by-products: review




By-products; Vegetable matrix; Emerging technologies; Food processing.


Due to the projection of population growth for the next decades, the demand for food production has been triggering an increase in the generation of agro-industrial waste/by-products. In the past, these by-products were seen as a problem to be solved, however, in the current scenario, they can serve as raw material for several industries, being the main strategy used for the development of products and processes and, also, for the extraction of compounds of interest, such as bioactive compounds. The bioactive compounds are divided into groups containing several substances and, among them, the polyphenols and carotenoids stand out, which can express important biological and functional activities, drawing attention to their extraction. In this context, the application of innovative extraction technologies in the food industries has been widely studied and investigated, mainly due to the increase in consumer awareness of more ecological options that do not include the use of organic solvents harmful to health. Thus, extractions assisted by unconventional or emerging technologies such as ultrasound (US), microwave (MO), supercritical fluid (FS), pressurized fluid (FP), high hydrostatic pressure (AP) and pulsed electric field (CEP) have demonstrated several advantages. when compared to traditional extraction methods, such as the use of moderate temperatures and shorter extraction time, but they still face barriers to their insertion at an industrial level. Therefore, this review aims to present the bioactive compounds from fruits and vegetables and their extraction methods, emphasizing the potential of emerging technologies for this purpose.


Aganovic, K., Hertel, C., Vogel, R. F., Johne, R., Schlüter, O., Schwarzenbolz, U., & Heinz, V. (2021). Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3225-3266.

Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: an overview. International journal of molecular sciences, 17(6), 835.

Al Khawli, F., Pateiro, M., Domínguez, R., Lorenzo, J. M., Gullón, P., Kousoulaki, K., ... & Barba, F. J. (2019). Innovative green technologies of intensification for valorization of seafood and their by-products. Marine Drugs, 17(12), 689.

Albuquerque, B. R., Pereira, C., Calhelha, R. C., Alves, M. J., Abreu, R. M., Barros, L. & Ferreira, I. C. (2020). Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive properties. Food chemistry, 309, 125735.

Algandaby, M. M. (2018). Antifibrotic effects of crocin on thioacetamide-induced liver fibrosis in mice. Saudi journal of biological sciences, 25(4), 747-754.

Ali, M., Imran, M., Nadeem, M., Khan, M. K., Sohaib, M., Suleria, H. A. R., & Bashir, R. (2019). Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant− based polyphenolic optimal extracts. Lipids in health and disease, 18(1), 1-16.

Aliakbarian, B., Sampaio, F. C., de Faria, J. T., Pitangui, C. G., Lovaglio, F., Casazza, A. A. & Perego, P. (2018). Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network. Lwt, 93, 220-228.

Andreo, D., & Jorge, N. (2006). Antioxidantes naturais: técnicas de extração. Boletim do Centro de Pesquisa de Processamento de Alimentos, 24(2), 319-336.

Arina, M. I., & Harisun, Y. (2019). Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatalysis and Agricultural Biotechnology, 19, 101104.

Arús, B. A., Souza, D. G., Bellaver, B., Souza, D. O., Goncalves, C. A., Quincozes-Santos, A., & Bobermin, L. D. (2017). Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Molecular and cellular biochemistry, 428(1), 67-77.

Awasthi, M. K., Paul, A., Kumar, V., Sar, T., Kumar, D., Sarsaiya, S., ... & Taherzadeh, M. J. (2022). Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. Bioresource Technology, 344, 126193.

Bambeni, T., Tayengwa, T., Chikwanha, O. C., Manley, M., Gouws, P. A., Marais, J., ... & Mapiye, C. (2021). Biopreservative efficacy of grape (Vitis vinifera) and clementine mandarin orange (Citrus reticulata) by-product extracts in raw ground beef patties. Meat Science, 181, 108609.

Barba, F. J., Esteve, M. J., & Frigola, A. (2013). Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International, 50(2), 545-549.

Barreira, T. F., Paula, G. X. D., Pinheiro, S. S., Cardoso, L. D. M., Santos, R. H. S., & Pinheiro-Sant’ana, H. M. (2019). Chemical characterization and bioactive compounds of an unconventional vegetable-Erechtites valerianifolia (Wolf) DC. Food Science and Technology, 39, 546-551.

Belandria, V., de Oliveira, P. M. A., Chartier, A., Rabi, J. A., de Oliveira, A. L., & Bostyn, S. (2016). Pressurized-fluid extraction of cafestol and kahweol diterpenes from green coffee. Innovative food science & emerging technologies, 37, 145-152.

Bertholdo, D. T., Stoffel, F., Piemolini-Berreto, L. T. (2018). Extração de compostos bioativos do suco e do resíduo de processamento de Araçá Vermelho (Psidium Cattleynaum) por campo elétrico pulsado. 6° Simpósio de Segurança Alimentar, Fundação de Apoio da Universidade Federal do Rio Grande do Sul.

Bi, Y., Lu, Y., Yu, H., & Luo, L. (2019). Optimization of ultrasonic-assisted extraction of bioactive compounds from Sargassum henslowianum using response surface methodology. Pharmacognosy Magazine, 15(60), 156.

Bramont, W. B., Leal, I. L., Umsza-Guez, M. A., Guedes, A. S., Alves, S. C. O., Reis, J. H. O. & Machado, B. A. S. (2018). Comparação da composição centesimal, mineral e fitoquímica de polpas e cascas de dez diferentes frutas. Rev. Virtual Quim, 10(4).

Cádiz-Gurrea, L. M., del Carmen Villegas-Aguilar, M., Leyva-Jiménez, F. J., Pimentel-Moral, S., Fernández-Ochoa, Á., Alañón, M. E., & Segura-Carretero, A. (2020). Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food research international, 138, 109786.

Carratu, E., & Sanzini, E. (2005). Sostanze biologicamente attive presenti negli alimenti di origine vegetable. Ann. Ist. Super Sanità, 41 (1), 7-16.

Casquete, R., Castro, S. M., Martín, A., Ruiz-Moyano, S., Saraiva, J. A., Córdoba, M. G., & Teixeira, P. (2015). Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innovative Food Science & Emerging Technologies, 31, 37-44.

Castro, T. L., Rodrigues, P. L. G., Bastos, C. P., Victoria, F. N. (2020). Extração assistida por ultrassom de compostos bioativos da casca e da semente de Atemoia (Annona x atemoya). Anais do XXIX Congresso de Iniciação Científica, Universidade Federal de Pelotas.

Castro-López, C., Rojas, R., Sánchez-Alejo, E. J., Niño-Medina, G., & Martínez-Ávila, G. C. (2016). Phenolic compounds recovery from grape fruit and by-products: An overview of extraction methods. Grape and wine biotechnology, 5, 104-123.

Cattaneo, A., Federighi, G., & Vaz, S. (2021). The environmental impact of reducing food loss and waste: A critical assessment. Food Policy, 98, 101890.

Chantaro, P., Devahastin, S., & Chiewchan, N. (2008). Production of antioxidant high dietary fiber powder from carrot peels. LWT-Food Science and Technology, 41(10), 1987-1994.

Chaouch, M. A., Benvenuti, S. (2020) The role of fruit by-products as bioactive compounds for intestinal health. Foods, 9 (11), 1716, 2020.

Chen, X. M., Tait, A. R., & Kitts, D. D. (2017). Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food chemistry, 218, 15-21.

Choe, C., Cheon, S., Gu, J., & Lim, H. (2022). Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source. Renewable and Sustainable Energy Reviews, 161, 112398.

Coman, V., Teleky, B. E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L. F., & Vodnar, D. C. (2020). Bioactive potential of fruit and vegetable wastes. Advances in food and nutrition research, 91, 157-225.

Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies, 9(1), 85-91.

Courtois, A., Jourdes, M., Dupin, A., Lapèze, C., Renouf, E., Biais, B., ... & Krisa, S. (2017). In vitro glucuronidation and sulfation of ε-viniferin, a resveratrol dimer, in humans and rats. Molecules, 22(5), 733.

Cui, J., Duan, X., Ke, L., Pan, X., Liu, J., Song, X., & Fan, Y. (2021). Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia, 157, 105106.

da Silva, C., Garcia, V. S., & Franciscato, L. S. (2016). Extração assistida por ultrassom de compostos bioativos das cascas de lichia (Litchi chinensis Sonn.). RECEN-Revista Ciências Exatas e Naturais, 18(1), 81-96.

Da Silva, L. M. R., De Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., De Figueiredo, R. W., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food chemistry, 143, 398-404.

Das, M., Devi, L. M., & Badwaik, L. S. (2022). Ultrasound-assisted extraction of pumpkin seeds protein and its physicochemical and functional characterization. Applied Food Research, 100121.

de los Ángeles Fernández, M., Espino, M., Gomez, F. J., & Silva, M. F. (2018). Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry, 239, 671-678.

De Melo, M. M. R., Silvestre, A. J. D., & Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. The Journal of Supercritical Fluids, 92, 115-176.

de Oliveira Costa, F. H., de Moraes, C. C., da Silva, A. L., Delai, I., Chaudhuri, A., & Pereira, C. R. (2022). Does resilience reduce food waste? Analysis of Brazilian supplier-retailer dyad. Journal of Cleaner Production, 338, 130488.

de Oliveira, N. A., Cornelio-Santiago, H. P., Fukumasu, H., & de Oliveira, A. L. (2018). Green coffee extracts rich in diterpenes–Process optimization of pressurized liquid extraction using ethanol as solvent. Journal of Food Engineering, 224, 148-155.

de Oliveira, W. Q., Neri-Numa, I. A., Arruda, H. S., Lopes, A. T., Pelissari, F. M., Barros, F. F. C., & Pastore, G. M. (2021). Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends in Food Science & Technology, 111, 442-462.

Dentinho, M. T. P., Paulos, K., Francisco, A., Belo, A. T., Jerónimo, E., Almeida, J., ... & Santos-Silva, J. (2020). Effect of soybean meal treatment with Cistus ladanifer condensed tannins in growth performance, carcass and meat quality of lambs. Livestock Science, 236, 104021.

Duraisamy, R., Shuge, T., Worku, B., Berekete, A. K., & Ramasamy, K. M. (2020). Extraction, screening and spectral characterization of tannins from acacia xanthophloea (Fever Tree) Bark. Research Journal of Textile and Leather, 1 (1), 1-10, 1.

Eliasson, C., Kamal-Eldin, A., Andersson, R., & Åman, P. (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of chromatography A, 1012(2), 151-159.

El-Sawi, S. A., Ibrahim, M. E., Sleem, A. A., Farghaly, A. A., Awad, G. E., & Merghany, R. M. (2022). Development of alternative medicinal sources from golden berry, bananas and carrot wastes as antioxidant, cytotoxic and antimicrobial agents. Acta Ecologica Sinica, 42(3), 224-232.

Feiden, T. (2020) Extração assistida por ultrassom de antocianinas da casca de Jabuticaba (Myrciaria Cauliflora). Trabalho de conclusão de curso, Universidade Regional Integrada do Alto Uruguai e das Missões – Campus de Erechim.

Ferreira, S. S., Passos, C. P., Cardoso, S. M., Wessel, D. F., & Coimbra, M. A. (2018). Microwave assisted dehydration of broccoli by-products and simultaneous extraction of bioactive compounds. Food Chemistry, 246, 386-393.

Florencia, V., López, O. V., & García, M. A. (2020). Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Composites Part B: Engineering, 182, 107653.

Fu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Li, L., ... & Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Lwt, 144, 111220.

Fuentes-Alventosa, J. M., Jaramillo-Carmona, S., Rodríguez-Gutiérrez, G., Guillén-Bejarano, R., Jiménez-Araujo, A., Fernández-Bolaños, J., & Rodríguez-Arcos, R. (2013). Preparation of bioactive extracts from asparagus by-product. Food and Bioproducts Processing, 91(2), 74-82.

Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1), 128.

Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Blandizzi, C., & Antonioli, L. (2018). Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review. Nutrition Research Reviews, 31(2), 239-247.

Giannaccare, G., Pellegrini, M., Senni, C., Bernabei, F., Scorcia, V., & Cicero, A. F. G. (2020). Clinical applications of astaxanthin in the treatment of ocular diseases: Emerging insights. Marine drugs, 18(5), 239.

Giordano, M. A. (2021) Extração de compostos químicos e bioativos de bio-resíduos de casca de kiwi usando a técnica de extração assistida por ultrassons. Tese de Doutorado, Universidade Tecnológica Nacional de Córdoba.

Gomes, B. M., Santos, L. G., Silva, G. F., Martins, V. G. (2021). Extração assistida por ultrassom de compostosfenólicos da casca de Bocaiuva (Acrocomia Aculeata). Revista Brasileira de Agrotecnologia, 11 (2),995-999.

González, M.P.E., Montoya, V.H. (2007). Characterization of mango pit as raw material in the preparation of activated carbon for wastewater treatment. Biochemical Engineering Journal, 36, 230-238.

Górnaś, P., Rudzinska, M., Raczyk, M., Misina, I., Soliven, A., La̅cis, G., & Seglina, D. (2016). Impact of species and variety on concentrations of minor lipophilic bioactive compounds in oils recovered from plum kernels. Journal of agricultural and food chemistry, 64(4), 898-905.

Goula, A. M., Ververi, M., Adamopoulou, A., & Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics sonochemistry, 34, 821-830.

Goyeneche, R., Fanovich, A., Rodrigues, C. R., Nicolao, M. C., & Di Scala, K. (2018). Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity. The Journal of Supercritical Fluids, 135, 78-83.

Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies, 64, 102424.

Guandalini, B. B. V., Rodrigues, N. P., & Marczak, L. D. F. (2019). Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Research International, 119, 455-461.

Guerrero-Beltran, J. A., & Welti-Chanes, J. (2016). Pulsed electric fields. Encyclopedia of Food and Health. Academic Press, 561-565.

Guven, H., Arici, A., Simsek, O. (2019). Flavonoids in our foods: A short review. Journal of Basic and Clinical Health Sciences, 3, 96-106.

Heinz, V., Toepfl, S., & Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Science & Emerging Technologies, 4(2), 167-175.

Heleno, S. A., Martins, A., Queiroz, M. J. R., & Ferreira, I. C. (2015). Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food chemistry, 173, 501-513.

Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies, 58, 102233.

Herrero, M., del Pilar Sánchez-Camargo, A., Cifuentes, A., & Ibáñez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends in Analytical Chemistry, 71, 26-38.

Hiranvarachat, B., & Devahastin, S. (2014). Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. Journal of Food Engineering, 126, 17-26.

Hromadkova, Z., Kováčiková, J., & Ebringerová, A. (1999). Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Industrial Crops and Products, 9(2), 101-109.

INÁCIO, Heloisa Patrício et al. (2022). Efeito de diferentes métodos de extração sobre o perfil fenólico e potencial bioativo de resíduos obtidos do processamento do café (Coffea arabica L.). Dissertação de Mestrado em Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina.

Iqbal, A., Schulz, P., & Rizvi, S. S. (2021). Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Bioscience, 44, 101384.

Jadhav, D., Rekha, B. N., Gogate, P. R., & Rathod, V. K. (2009). Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. Journal of food engineering, 93(4), 421-426.

Kabir, F., Tow, W. W., Hamauzu, Y., Katayama, S., Tanaka, S., & Nakamura, S. (2015). Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food chemistry, 167, 358-362.

Kamiloglu, S., Capanoglu, E., Bilen, F. D., Gonzales, G. B., Grootaert, C., Van de Wiele, T., & Van Camp, J. (2016). Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). Journal of Agricultural and Food Chemistry, 64(12), 2450-2458.

Kemppainen, K., Siika-aho, M., Pattathil, S., Giovando, S., & Kruus, K. (2014). Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Industrial Crops and Products, 52, 158-168.

Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food chemistry, 119(2), 851-858.

Khan, Z. A., Iqbal, A., & Shahzad, S. A. (2017). Synthetic approaches toward stilbenes and their related structures. Molecular Diversity, 21(2), 483-509.

Khanbabaee, K., & Van Ree, T. (2001). Tannins: classification and definition. Natural product reports, 18(6), 641-649.

Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328-2375.

Kim, H. W., Kim, J. B., Cho, S. M., Chung, M. N., Lee, Y. M., Chu, S. M. & Lee, D. J. (2012). Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food chemistry, 130(4), 966-972.

King, J. W. (2014). Modern supercritical fluid technology for food applications. Annual review of food science and technology, 5, 215-238.

Kumar, N. & Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. (2019). Biotechnology Reports, 24, e00370.

Lai, J. C. H., Mahesan, D., & Baini, R. (2022). Characterization and optimization of extracted pectin from unripe banana and mango fruit peels. Materials Today: Proceedings.

Lanjekar, K. J., Gokhale, S., & Rathod, V. K. (2022). Utilization of waste mango peels for extraction of polyphenolic antioxidants by ultrasound-assisted natural deep eutectic solvent. Bioresource Technology Reports, 18, 101074.

Li, J., Chen, W., Niu, D., Wang, R., Xu, F. Y., Chen, B. R., & Zeng, X. A. (2022). Efficient and green strategy based on pulsed electric field coupled with deep eutectic solvents for recovering flavonoids and preparing flavonoid aglycones from noni-processing wastes. Journal of Cleaner Production, 368, 133019.

Lombardelli, C., Benucci, I., & Esti, M. (2021). Novel food colorants from tomatoes: Stability of carotenoid-containing chromoplasts under different storage conditions. LWT, 140, 110725.

Louis, A. C. F., & Venkatachalam, S. (2020). Energy efficient process for valorization of corn cob as a source for nanocrystalline cellulose and hemicellulose production. International Journal of Biological Macromolecules, 163, 260-269.

Luo, X., Bai, R., Zhen, D., Yang, Z., Huang, D., Mao, H., & Fu, C. (2019). Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Industrial Crops and Products, 129, 405-413.

Macedo, G. A., Santana, Á. L., Crawford, L. M., Wang, S. C., Dias, F. F., & de Moura Bell, J. M. (2021). Integrated microwave-and enzyme-assisted extraction of phenolic compounds from olive pomace. Lwt, 138, 110621.

Marconi, M. A., & Lakatos, E. M.(2011). Metodologia do trabalho científico: procedimentos básicos, pesquisa bibliográfica, projeto e relatório, publicações e trabalhos científicos (7a ed.). São Paulo: Atlas.

Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37.

Martins, N., Barros, L., Henriques, M., Silva, S., & Ferreira, I. C. (2015). Activity of phenolic compounds from plant origin against Candida species. Industrial Crops and Products, 74, 648-670.

Martins, R. O., Gomes, I. C., Telles, A. D. M., Kato, L., Souza, P. S., & Chaves, A. R. (2020). Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. Journal of Chromatography A, 1620, 460977.

Meregalli, M. M., Puton, B. M. S., Camera, F. D. M., Amaral, A. U., Zeni, J., Cansian, R. L., ... & Backes, G. T. (2020). Conventional and ultrasound-assisted methods for extraction of bioactive compounds from red araçá peel (Psidium cattleianum Sabine). Arabian Journal of Chemistry, 13(6), 5800-5809.

Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K., & Mauromoustakos, A. (2010). Subcritical solvent extraction of anthocyanins from dried red grape pomace. Journal of agricultural and food chemistry, 58(5), 2862-2868.

Moraes, M. N., Zabot, G. L., & Meireles, M. A. A. (2015). Extraction of tocotrienols from annatto seeds by a pseudo continuously operated SFE process integrated with low-pressure solvent extraction for bixin production. The Journal of Supercritical Fluids, 96, 262-271.

Morata, A., Escott, C., Loira, I., López, C., Palomero, F., & González, C. (2021). Emerging non-thermal technologies for the extraction of grape anthocyanins. Antioxidants, 10(12), 1863.

Mordi, R. C., Ademosun, O. T., Ajanaku, C. O., Olanrewaju, I. O., & Walton, J. C. (2020). Free radical mediated oxidative degradation of carotenes and xanthophylls. Molecules, 25(5), 1038.

Moreira, S. A., Alexandre, E. M., Pintado, M., & Saraiva, J. A. (2019). Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Research International, 115, 177-190.

Naima, R., Oumam, M., Hannache, H., Sesbou, A., Charrier, B., Pizzi, A., & Charrier–El Bouhtoury, F. (2015). Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Industrial Crops and Products, 70, 245-252.

Nayak, B., Dahmoune, F., Moussi, K., Remini, H., Dairi, S., Aoun, O., & Khodir, M. (2015). Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food chemistry, 187, 507-516.

Nazzaro, F., Fratianni, F., Ombra, M. N., d’Acierno, A., & Coppola, R. (2018). Recovery of biomolecules of high benefit from food waste. Current Opinion in Food Science, 22, 43-54.

Ndayishimiye, J., & Chun, B. S. (2017). Optimization of carotenoids and antioxidant activity of oils obtained from a co-extraction of citrus (Yuzu ichandrin) by-products using supercritical carbon dioxide. Biomass and Bioenergy, 106, 1-7.

Ng, H. S., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Lan, J. C. W. (2020). Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresource technology, 302, 122889.

Nowicki, P., Skrzypczak, M., & Pietrzak, R. (2010). Effect of activation method on the physicochemical properties and NO2 removal abilities of sorbents obtained from plum stones (Prunus domestica). Chemical Engineering Journal, 162(2), 723-729.

Nowicki, P., Wachowska, H., & Pietrzak, R. (2010). Active carbons prepared by chemical activation of plum stones and their application in removal of NO2. Journal of Hazardous Materials, 181(1-3), 1088-1094.

Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299-4315.

Ozkan, G., Guldiken, B., & Capanoglu, E. (2019). Effect of novel food processing technologies on beverage antioxidants. Processing and Sustainability of Beverages, 413-449.

Pagano, I., Campone, L., Celano, R., Piccinelli, A. L., & Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295.

Poaty, B., Dumarçay, S., Gérardin, P., & Perrin, D. (2010). Modification of grape seed and wood tannins to lipophilic antioxidant derivatives. Industrial Crops and Products, 31(3), 509-515.

Puértolas, E., Saldaña, G., Condón, S., Álvarez, I., & Raso, J. (2010). Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chemistry, 119(3), 1063-1070.

Putnik, P., Kresoja, Ž., Bosiljkov, T., Jambrak, A. R., Barba, F. J., Lorenzo, J. M., & Kovačević, D. B. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry, 279, 150-161.

Qian, J., Li, Y., Gao, J., He, Z., & Yi, S. (2020). The effect of ultrasonic intensity on physicochemical properties of Chinese fir. Ultrasonics Sonochemistry, 64, 104985.

Raja, P. B., Rahim, A. A., Qureshi, A. K., & Awang, K. (2014). Green synthesis of silver nanoparticles using tannins. Materials Science-Poland, 32(3), 408-413.

Rashid, R., Masoodi, F. A., Wani, S. M., Manzoor, S., & Gull, A. (2022). Ultrasound assisted extraction of bioactive compounds from pomegranate peel, their nanoencapsulation and application for improvement in shelf life extension of edible oils. Food Chemistry, 385, 132608.

Rashid, R., Wani, S. M., Manzoor, S., Masoodi, F. A., & Dar, M. M. (2022). Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: optimisation, comparison and bioactivity. Food Chemistry, volume 398, 133871.

Ravindran, R., Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). A review on bioconversion of agro-industrial wastes to industrially important enzymes. Bioengineering, 5(4), 93.

Redondo, D., Venturini, M. E., Luengo, E., Raso, J., & Arias, E. (2018). Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative food science & emerging technologies, 45, 335-343.

Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291.

Rhazi, N., Hannache, H., Oumam, M., Sesbou, A., Charrier, B., Pizzi, A., & Charrier-El Bouhtoury, F. (2019). Green extraction process of tannins obtained from Moroccan Acacia mollissima barks by microwave: Modeling and optimization of the process using the response surface methodology RSM. Arabian Journal of Chemistry, 12(8), 2668-2684.

Ribeiro, N. G., Xavier-Santos, D., Campelo, P. H., Guimarães, J. T., Pimentel, T. C., Duarte, M. C. K., & Cruz, A. G. (2022). Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science & Emerging Technologies, 102934.

Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: a technique for sample preparation. Analytical chemistry, 68(6), 1033-1039.

Righi, H., Camila, S., Bolanho, B. C. (2018). Ultrasound-assisted extraction of betalines from red beet (Beta vulgaris L.). Journal of Food Engineering Process, 41, 1-6.

Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., de Oliveira Schmitz, A. P. & Geraldi, C. A. Q. (2020). Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817.

Rodrigues, P. L. G., Soares, S. R., Bastos, C. P., Victoria, F. N. (2020). Extração assistida por ultrassom de compostos bioativos da casca de Pitaia (Hyloreus Undatus). Anais do IV Congresso de Inovação Tecnológica. Universidade Federal De Pelotas.

Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., & Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in lipid research, 70, 62-93.

Rodríguez-Pérez, C., Quirantes-Piné, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246-254.

Rodsamran, P., & Sothornvit, R. (2019). Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food bioscience, 28, 66-73.

Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food chemistry, 171, 144-152.

Saini, A., Panesar, P. S., & Bera, M. B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing, 6(1), 1-12.

Saini, R. K., Keum, Y. S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90-103.

Saldaña, M. D. A., Silva, E. K., Cornejo, J. E. O., & Lopez, C. L. O. (2021). Green Processes in Foodomics: Biorefineries in the Food Industry.

Santos Filho, A. F., da Silva, D. A., da Silva, L. H. M., & da Cruz Rodrigues, A. M. (2021). Avaliação da extração assistida por ultrassom de compostos bioativos das folhas de chicória (Eryngium foetidum L.) e cariru (Talinum triangulare Jacq. Willd). Brazilian Journal of Development, 7(12), 118256-118270.

Santos, D. B. (2012). Extração com dióxido de carbono supercrítico e estudo da composição dos extratos de sementes de Pitanga (Eugenia uniflora L.). Dissertação de Mestrado em Ciências, Universidade de São Paulo.

Santos, M. C. P. (2017). Caracterização do potencial funcional de produto e subproduto de frutas e hortaliças. Dissertação de Mestrado em Alimentos e Nutrição, Universidade Federal do Estado do Rio de Janeiro.

Santos, S. S., Rodrigues, L. M., Costa, S. C., & Madrona, G. S. (2019). Antioxidant compounds from blackberry (Rubus fruticosus) pomace: Microencapsulation by spray-dryer and pH stability evaluation. Food Packaging and Shelf Life, 20, 100177.

Serment-Moreno, V., Jacobo-Velázquez, D. A., Torres, J. A., & Welti-Chanes, J. (2017). Microstructural and physiological changes in plant cell induced by pressure: Their role on the availability and pressure-temperature stability of phytochemicals. Food Engineering Reviews, 9(4), 314-334.

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452.

Sharma, M., Usmani, Z., Gupta, V. K., & Bhat, R. (2021). Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Critical Reviews in Biotechnology, 41(4), 535-563.

Shirsath, S. R., Sonawane, S. H., & Gogate, P. R. (2012). Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10-23.

Shouqin, Z., Junjie, Z., & Changzhen, W. (2004). Novel high pressure extraction technology. International journal of Pharmaceutics, 278(2), 471-474.

Silva, T. V. B. D., Danesi, E. D. G., Ruiz, S. P., & Bolanho, B. C. (2019). Aplicação de extração assistida por micro-ondas para obtenção de compostos bioativos e resíduo fibroso a partir do subproduto de goiaba. Hig. aliment, 3262-3266.

Sinha, S., & Tripathi, P. (2021). Trends and challenges in valorisation of food waste in developing economies: A case study of India. Case Studies in Chemical and Environmental Engineering, 4, 100162.

Sirerol, J. A., Rodríguez, M. L., Mena, S., Asensi, M. A., Estrela, J. M., & Ortega, A. L. (2016). Role of natural stilbenes in the prevention of cancer. Oxidative Medicine and Cellular Longevity, 2016.

Socaci, S. A., Rugină, D. O., Diaconeasa, Z. M., Pop, O. L., Fărcaș, A. C., Păucean, A. & Pintea, A. (2017). Antioxidant compounds recovered from food wastes. Functional Food-Improve Health through Adequate Food, 3-22.

SOUZA, C. G. (2015). Extração de compostos bioativos e pectina da casca de maracujá utilizando sistema pressurizado e ultrassom. 2015. 63 f. Dissertação de Mestrado em Engenharia Química – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza.

Stajčić, S., Ćetković, G., Čanadanović-Brunet, J., Djilas, S., Mandić, A., & Četojević-Simin, D. (2015). Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food chemistry, 172, 225-232.

Tapas, A. R., Sakarkar, D. M., & Kakde, R. B. (2008). Flavonoids as nutraceuticals: a review. Tropical journal of Pharmaceutical research, 7(3), 1089-1099.

Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109.

Trigo, J. P., Alexandre, E. M., Saraiva, J. A., & Pintado, M. E. (2022). High value-added compounds from fruit and vegetable by-products–Characterization, bioactivities, and application in the development of novel food products. Critical reviews in food science and nutrition, 60(8), 1388-1416.

Udugama, I. A., Petersen, L. A., Falco, F. C., Junicke, H., Mitic, A., Alsina, X. F., ... & Gernaey, K. V. (2020). Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. Food and Bioproducts Processing, 119, 133-147.

Vardanega, R., Santos, D. T., & Meireles, M. A. A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy reviews, 8(16), 88.

Varjani, S., & Upasani, V. N. (2021). Bioaugmentation of Pseudomonas aeruginosa NCIM 5514–A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresource Technology, 319, 124240.

Veggi, P. C., Martinez, J., & Meireles, M. A. A. (2012). Fundamentals of microwave extraction. In Microwave-assisted extraction for bioactive compounds (pp. 15-52). Springer, Boston, MA.

Vieira, P.A.F. (2007). Caracterização dos resíduos da manga (Mangifera indica L.) e efeitos sobre o desempenho e os parâmetros bioquímicos em frangos de corte. Tese de Mestrado, Universidade Federal de Viçosa.

Vigano, J., de Aguiar, A. C., Veggi, P. C., Sanches, V. L., Rostagno, M. A., & Martinez, J. (2022). Techno-economic evaluation for recovering phenolic compounds from acai (Euterpe oleracea) by-product by pressurized liquid extraction. The Journal of Supercritical Fluids, 179, 105413.

Vinatoru, M., Mason, T. J., & Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178.

Voigt, D. D., Kelly, A. L., & Huppertz, T. (2015). High-pressure processing of milk and dairy products. Emerg Dairy Process Technol Oppor Dairy Ind, 3, 71-92.

Wang, Z., Guo, Q. Y., Zhang, X. J., Li, X., Li, W. T., Ma, X. T., & Ma, L. J. (2014). Corilagin attenuates aerosol bleomycin-induced experimental lung injury. International Journal of Molecular Sciences, 15(6), 9762-9779.

Williamson, G., Kay, C. D., & Crozier, A. (2018). The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054-1112.

Wu, J., Lin, L., & Chau, F. T. (2001). Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics sonochemistry, 8(4), 347-352.

Xu, B., Ren, A., Chen, J., Li, H., Wei, B., Wang, J., ... & Ma, H. (2021). Effect of multi-mode dual-frequency ultrasound irradiation on the degradation of waxy corn starch in a gelatinized state. Food Hydrocolloids, 113, 106440.

Yammine, S., Brianceau, S., Manteau, S., Turk, M., Ghidossi, R., Vorobiev, E., & Mietton-Peuchot, M. (2018). Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies. Critical reviews in food science and nutrition, 58(8), 1375-1390.

Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non‐thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science & Technology, 54(1), 1-13.

Zhang, Z., & Li, G. (2010). A review of advances and new developments in the analysis of biological volatile organic compounds. Microchemical journal, 95(2), 127-139.

Zhi, W. J., Wang, L. F., & Hu, X. J. (2017). Recent advances in the effects of microwave radiation on brains. Military Medical Research, 4(1), 1-14.



How to Cite

JUSTINO, H. de F. M. .; CUNHA, J. S. .; PACHECO, A. F. C. .; PACHECO, F. C. .; MARTINS, C. C. N. .; PAIVA, P. H. C. .; LEITE JÚNIOR, B. R. de C. . Use of unconventional technologies to extract bioactive compounds from fruit and vegetable by-products: review . Research, Society and Development, [S. l.], v. 11, n. 14, p. e44111435488, 2022. DOI: 10.33448/rsd-v11i14.35488. Disponível em: Acesso em: 26 nov. 2022.



Review Article