Thyroid disorders and Covid-19: a literature review




Thyroid gland diseases; Covid-19; Thyroid gland; Subacute thyroiditis; Angiotensin 2 converting enzyme.


COVID-19 is a highly contagious disease caused by SARS-CoV-2, a single-stranded, enveloped RNA virus belonging to the beta-coronavirus family. SARS-CoV-2 is phylogenetically related to SARS-CoV-1, the virus that causes severe acute respiratory syndrome (SARS). Like SARS-CoV-1, SARS-CoV-2 infects human tissues by entering cells via the angiotensin-converting enzyme 2 (ACE2) receptor. It was alarming that, during the SARS-CoV-1 outbreak, many infected patients had thyroid gland disorders, even causing severe cellular damage. As SARS-CoV-2 is similar to SARS-CoV-1, researchers began to assess the possibility of developing thyroid diseases, especially subacute thyroiditis, in infected patients. Objective: To establish a possible relationship between the development of thyroid disorders and the infectious process caused by SARS-CoV-2 infection. Method: Literature review, supported by results obtained in studies related to the topic. Results: Studies carried out in the different stages of SARS-COV-2 infection suggest the existence of an association between SARS-CoV-2 infection and changes in thyroid function. Conclusion: Although most patients are euthyroid or have subacute thyroiditis, other thyroid diseases can manifest during SARS-CoV-2 infection, indicating the importance of assessing thyroid function in hospitalized, symptomatic and asymptomatic patients.


Agarwal, S., & Agarwal, S. K. (2020).Endocrine changes in SARS-CoV-2 patients and lessons from SARSCoV. Postgrad Med J.96:412-6.

Altay, F. A., Güz, G., & Altay, M. (2016). Subacute thyroiditis following seasonal influenzavaccination. Hum Vaccines Immunother. 12:1033-4.

Bernardo, W. M., Nobre, M. R. C., & Jatene, F. B. (2004) A prática clinica baseada em evidências. Parte II: buscando as evidências em fontes de informação. Rev Assoc Med Bras. 50(1):1-9.

Brancatella, A., Ricci, D., Cappellani, D., et al. (2020). Is subacute thyroiditis in the underestimated manifestation of SARS-CoV-2 infection? Insights from the case series. J Clin Endocrinol Metab.105(10):e3742-46.

Brancatella, A., Ricci, D., Viola, N., Sgro, D., Santini, F., & Latrofa, F. (2020). Subacute thyroiditis after Sars-COV-2 infection. J Clin Endocrinol Metab.105(7):2367-70.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.Qualitative research in psychology,3(2), 77-101

Chappell, M. C. (2021). Commentary for endocrine significance of SARS-CoV-2's reliance on ACE2. Endocrinology.162:bqaa222.

Chen, M., Zhou, W., & Xu W. (2020).Thyroid function analysis in 50 patients with COVID-19: A retrospective study. Thyroid. 31(1):8-11.

Chen, T., Wu, D., Chen, H., et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ.368:m1091.

Chen, W., Tian, Y., Li, Z., et al. (2021). Potential interaction between SARS-CoV-2 and thyroid: A review. Endocrinology. 162:bqab004.

Christensen, J., O'Callaghan, K., Sinclair, H., Hawke, K., et al. (2020). Risk factors, treatment and outcomes of subacute thyroiditis secondary to COVID-19: a systematic review. Intern Med J. 52(4):522-29.

Dong, M., Zhang, J., Ma, X., Tan, J., et al. (2020). ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID- Biomed Pharmacother. 131:110678.

Duntas, L. H., & Jonklaas, J. (2021). COVID-19 and thyroid diseases: A bidirectional impact. J Endocr Soc.5:bvab076.

Franquemont, S., & Galvez, J. (2021). Subacute thyroiditis after mRNA vaccine for Covid-19. J Endocr Soc. 5:A956-7.

Grassi, T., Varotto, E., & Galassi, F.M. (2020). COVID-19, the viral endocrinological disease? Eur J Intern Med. 77:156-7.

Jiménez-Blanco, S., Pla-Peris, B., & Marazuela M. (2021). COVID-19: a cause of recurrent Graves' hyperthyroidism? J Endocrinol Invest.44:387-8.

Kakodkar, P., Kaka, N., & Baig, M.N. (2020). A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 COVID-19]. Cures. 12: e7560.

Khatri, A., Charlap, E., & Kim, A. (2021). Subacute thyroiditis from COVID-19 Infection: A case report and review of literature. Eur Thyroid J. 9(6):324-8.

Kothandaraman, N., Rengaraj, A., Xue, B., Yew, W. S., et al. (2021). COVID-19 endocrinopathy with hindsight from SARS. Am J Physiol Endocrinol Metab. 320:E139-50.

Khoo, B., Tan, T., Clarke, S. A., et al. (2020).Thyroid function before, during and after COVID-19. J Clin Endocrinol Metab. 106(2):e803-11.

Kumari, K., Chainy, G. B. N., & Subudhi, U. (2020). Prospective role of thyroid disorders in monitoring COVID-19 pandemic. Heliyon.6:e05712.

Lania, A., Sandri, M. T., Cellini, M., Mirani, M., et al. (2020). Thyro-toxicosis in patients with COVID-19: the THYRCOV study. Eur J Endocrinol. 183:381-7.

Leow, M. K., Kwek, D. S., Ng, A. W., Ong, K. C., et al. (2005). Hypocortisolism in survivors of severe acute respiratory syndrome [SARS]. Endocrinol Clin. 63:197-202.

Liang, W., Guan, W., Chen, R., et al. (2020). Cancer patients in SARS-CoV-2 infection: a Nationwide analysis in China. Lancet Oncol. 21:335-7.

Li, M. Y., Li, L., Zhang, Y., & Wang, X. S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 9:45.

Madjid, M., Safavi-Naeini, P., Solomon, S. D., et al. (2020). Potential effects of coronaviruses on the cardiovascular system: A Review. JAMA Cardiol 5: 831–840.

Mateu-Salat, M., Urgell, E., & Chico A. (2020). SARS-COV-2 as a trigger for autoimmunedisease: report of two cases of Graves' disease after COVID-19. J Endocrinol Invest.43:1527-8.

Murugan, A. K., &Alzahrani, A. S. (2021). SARS-CoV-2: Emerging Role in the Pathogenesis of Various Thyroid Diseases. J Inflamm Res.14:6191-221.

Mongioì, L. M., Barbagallo, F., Condorelli, R. A., Cannarella, R., et al. (2020). Possible long-term endocrine-metabolic complications in COVID-19: lesson from the SARS model. Endocrine. 68:467-70.

Muller, I., Cannavaro, D., Dazzi, D., Covelli, D., et al. (2020). SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrine. 8:739-41.

Oyibo, S. O. (2021). Subacute Thyroiditis after receiving the adenovirus-vectored vaccine for coronavirus disease (COVID-19). Cures. 13:e16045.

Rehman, M. A. U., Farooq, H., Ali, M. M., Rehman, M. E. U., et al. (2021).The association of subacute thyroiditis with COVID-19: a systematic review. SN Compr Clin Med. 18(3):1.

Scappaticcio, L., Pitoia, F., Esposito, K., et al. (2020).Impact of COVID-19 on the thyroid gland: an update. Rev Endocr Metab Disord.22:1-13.

Toft, J., Larsen, S., & Toft, H. (1998). Subacute thyroiditis after hepatitis B vaccination. Endocr J. 45:135.

Wang, W., Ye, Y. X., Yao, H., Sun, L. Q., et al. (2003). Evaluation and observation of serum thyroid hormone and parathyroid hormone in patients with severe acute respiratory syndrome. J Chin Anti-tuberculous Assoc. 25: 232-4.

Wei, L., Sun, S., Xu, C. H., Zhang, J., et al. (2007). Pathology of the thyroid in severe acute respiratory syndrome. Hmm Pathol.38:95-102.

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA.323:1239-42.

Zhang, Y., Lin, F., Tu, W., et al. (2021). Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19. Mol Cell Endocrinol. 521:111097.

Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., et al. (2020). SARS-CoV-2 ACE2 receptor is in the interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell.181:1016-1035.e19.



How to Cite

PINHEIRO, F. C. M. .; PINHEIRO, H. C. M. .; PINHEIRO, J. D. M. .; ABREU, J. D. M. F. de .; SOBRAL, C. S. P. . Thyroid disorders and Covid-19: a literature review. Research, Society and Development, [S. l.], v. 11, n. 14, p. e390111435546, 2022. DOI: 10.33448/rsd-v11i14.35546. Disponível em: Acesso em: 27 sep. 2023.



Health Sciences