Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world

Authors

DOI:

https://doi.org/10.33448/rsd-v9i6.3561

Keywords:

Non-linear regression; Coronaviruses; Pandemic; Social distance.

Abstract

An increasing number of cases of infection and death by COVID-19 has been observed in several parts of the world, including Brazil. While scientists are looking for a drug / vaccine capable of combating COVID-19, its devastating action is spreading out of control. In this context, statistical studies and preliminary analyzes of the epidemic situation may be important to provide a basis for disease prevention and control. Thus, the objective of this work was to adjust nonlinear regression models to mortality data and confirmed cases of COVID-19 in Brazil, Italy and the world until 03/31/2020. Data from the Ministry of Health of Brazil and the World Health Organization were used. The models were compared using the Akaike information criterion and the Bayesian information criterion, as well as the determination and adjusted determination coefficients, in addition to the square root of the mean square error. All models presented were adequate to model the studied variables. It is not yet possible to make reliable projections of when the numbers of confirmed cases and deaths will decrease. Social detachment in Brazil is being effective in restricting the progression of the disease by reducing the speed of infection and transmissibility.

Author Biography

Edgo Jackson Pinto Santiago, Universidade Federal Rural de Pernambuco

Engenheiro agrômo, mestre em agronomia, matemático, especialisat em estatística e matemática financeira e doudorando em biometria e estatística aplicada.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, ed. B. N. Petrov and F. Csaki, 267–281. Budapest: Akailseoniai–Kiudo.

Jung, S-k., Akhmetzhanov, A. R., Hayashi, K., Linton, N. M., Yang, Y., Yuan, B., Kobayashi, T., Kinoshita, R. & Nishiura, H. (2020). Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med., 9(2), 523. https://doi.org/10.3390/jcm9020523.

Li, Qun., Xuhua Guan., Peng Wu., Xiaoye Wang., Lei Zhou., Yeqing Tong., Ruiqi Ren., Kathy S.M. Leung., Eric H.Y. Lau., Jessica Y. Wong., Xuesen Xing., Nijuan Xiang., Yang Wu., Chao Li., Qi Chen., Dan Li., Tian Liu., Jing Zhao., Man Li., Wenxiao Tu., Chuding Chen., Lianmei Jin., Rui Yang., Qi Wang., Suhua Zhou., Rui Wang., Hui Liu., Yingbo Luo., Yuan Liu., Ge Shao., Huan Li., Zhongfa Tao., Yang Yang., Zhiqiang Deng., Boxi Liu., Zhitao Ma., Yanping Zhang., Guoqing Shi., Tommy T.Y. Lam., Joseph T.K. Wu., George F. Gao., Benjamin J. Cowling., Bo Yang., Gabriel M. Leung., & Zijian Feng. (2020). Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. The new england journal of medicine, 382,1199-1207. https://www.nejm.org/doi/full/10.1056/NEJMoa2001316.

Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rocklöv, J. (2020). The reproductive number of COVID19 is higher compared to SARS coronavirus. Journal of Travel Medicine. https://doi:10.1093/jtm/taaa021.

Medeiros, A. Y. B. V., Pereira, E. R., Silva, M. C. R. A. & Dias, F. A. (2020). Psychological phases and meaning of life in times of social isolation due the COVID-19 pandemic a reflection in the light of Viktor Frankl. Research, Society and Development. http://dx.doi.org/10.33448/rsd-v9i5.3131.

Meng, L., Honglu, X., Min, Y., Zhirong, L., Xiaoyan, W., Yi, Z., Gong, M., Gan, L., Liu, H., Tausman, W., Qiao, Z., Yanan, D. & Tao, F. B. (2020). Analysis of the spatio-temporal variation of the epidemic and the epidemic situation of new coronaviruses in Anhui province. Chinese Journal of Preventive Medicine, 54, 1-7. https://doi.org/10.3760/cma.j.cn112150-20200221-00150.

Möllenhoff, K., Bretz, F., & Dette, H. (2019). Equivalence of regression curves sharing common parameters. Biometrics. https://doi:10.1111/biom.13149.

Organização Pan-Americana da Saúde [OPAS] (2020). Folha informativa – COVID-19 (doença causada pelo novo coronavírus). Recuperado em 03 de abril de 2020 de:

https://www.paho.org/bra/index.php?option=com_content&view=article&id=6101:covid19&I temid=875.

Reinholz, M., & French, L. (2020). Medical education and care in dermatology during the SARS-CoV2 pandemia: challenges and chances. Journal of the European Academy of Dermatology and Venereology. https://doi:10.1111/jdv.16391.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461–464.

Song, P., & Karako, T. (2020). COVID-19: Real-time dissemination of scientific information to fight a public health emergency of international concern. BioScience Trends. https://doi:10.5582/bst.2020.01056.

Zalina, M. D., Desa, M. N. M., Nguyen, V-T-V & Kassim, A. H. M. (2018). Selecting a probability distribution for extreme rainfall series in Malaysia. Water Science and Technology, 45, 63-68. https://doi.org/10.2166/wst.2002.0028.

Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D. & Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. International Journal of Infectious Diseases. doi:10.1016/j.ijid.2020.01.050.

Yalan, L., Cong, L., Wenzheng, Z., & Ping, Y. (2020). Comparison of epidemiological characteristics, preventive measures and control of new coronavirus pneumonia with SARS and MERS [J / OL].. Medicine, 1 - 13. Recuperado em 03 de abril de 2020 de: http://kns.cnki.net/kcms/detail/42.1293.R.20200215.1149.004.html.

Winichakoon, P., Chaiwarith, R., Liwsrisakun, C., Salee, P., Goonna, A., Limsukon, A., & Kaewpoowat, Q. (2020). Negative Nasopharyngeal and Oropharyngeal Swab Does Not Rule Out COVID-19. Journal of Clinical Microbiology. https://doi:10.1128/jcm.00297-20.

Published

20/04/2020

How to Cite

SANTIAGO, E. J. P.; FREIRE, A. K. da S.; CUNHA FILHO, M.; MOREIRA, G. R.; FERREIRA, D. S. de A.; CUNHA, A. L. X. Non-linear models applicable to mortality and cases of COVID-19 in Brazil, Italy and the world. Research, Society and Development, [S. l.], v. 9, n. 6, p. e117963561, 2020. DOI: 10.33448/rsd-v9i6.3561. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/3561. Acesso em: 22 dec. 2024.

Issue

Section

Health Sciences