Influence of the addition of glass from long neck bottles in the properties of the reactive powder concrete
DOI:
https://doi.org/10.33448/rsd-v11i13.35853Keywords:
Glass Bottles; Reactive Powder Concrete; Mechanical Strength; Reuse.Abstract
This work presents an economical, technical, and environmentally correct solution for the disposal of long neck bottles (which cannot be bottled more than once), by replacing fine aggregates (sand) with residue of ground glass from long neck bottles in the production of reactive powder concrete (RCP). Using a reference formulation for RCP containing natural sand, this raw material was replaced in 12.5, 25, 50, 75 and 100 wt.% by glass residues, evaluating the physical and mechanical properties in the specimens at the ages of 7, 14, and 28 days. The ground glass was characterized by X-ray Fluorescence and DSC tests, indicating that it is a typical sodo-calcium glass, with a glass transition temperature equals to 560C. Grain size distribution and optical microscopy assays of natural sand and ground glass indicated that the comminution let to the acquisition of glass with granulometry similar to that of natural sand, but with very different geometries and roughness. The replacement of natural sand by 100% of ground glass presented the best results of mechanical properties, reaching 85% of the mechanical strength value of the reference composition, with about 96MPa; this composition also presented the lowest water absorption value (3.94%) and the lowest void index (9.33%) among all compositions. The results indicated that the replacement of sand by powder from long neck bottles is potentially feasible, promoting an environmentally correct destination for this residue in the construction sector, bringing a reduction in environmental impact, and generating concrete within the technical standards required by the norm.
References
Abid, M., Hou, X., Zheng, W., & Hussain, R. R. (2017). High temperature and residual properties of reactive powder concrete – A review. Construction and Building Materials, 147, 339–351. https://doi.org/10.1016/j.conbuildmat.2017.04.083
Al-Quraishi, H., Sahmi, N., & Ghalib, M. (2018). Bond Stresses between Reinforcing Bar and Reactive Powder Concrete. Journal of Engineering, 24(11), 84–100. https://doi.org/10.31026/j.eng.2018.11.07
Aldahdooh, M. A. A., Bunnori, N. M., & Johari, M. A. M. (2013). Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method. Materials & Design (1980-2015), 52, 957–965. https://doi.org/10.1016/j.matdes.2013.06.034
Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures – review and critique. Cement and Concrete Research, 122, 17–29. https://doi.org/10.1016/j.cemconres.2019.04.018
Ambev. (2016). Sustainability report. https://www.ambev.com.br/conteudo/uploads/2017/05/Ambev_Relat%C3%B3rio_Sustentabilidade_2016.pdf
Araújo, E.B. (1997). Glass: a brief history, characterization techniques and applications in technology, Brazilian Journal of Physics Education, 19 (3), 325–329. Retrieved from http://www.sbfisica.org.br/rbef/pdf/v19_325.pdf
Babu, K.G., & Prakash, P. V. S. (1995). Efficiency of silica fume in concrete. Cement and Concrete Research, 25(6), 1273–1283. https://doi.org/10.1016/0008-8846(95)00120-2
Associação Brasileira de Normas Técnicas. (1991). Portland cement of initial high strength (ABNT NBR No.5733).
Associação Brasileira de Normas Técnicas. (2009). Aggregates - Petrographic analysis of aggregate for concrete Part 1: Fine aggregate (ABNT NBR No.7389). https://www.abntcatalogo.com.br/norma.aspx?Q=THhRZ0JoWWR5WkRTblpXNWlPd2YzZjk4SXYwTTJrWEN4dEdxQXhiRXJsdz0=
Associação Brasileira de Normas Técnicas. (2005). Argamassa e concretos endurecidos- determinação da absorção de água, índice de vazios e massa específica (ABNT NBR No. 9778). https://www.abntcatalogo.com.br/norma.aspx?Q=d3RSR1B4ZW54NkV0WHFLMTdUN2E2WjlDOHczS2VQMVVEalZjMGxJYSsvQT0=
Associação Brasileira de Normas Técnicas. (2018). Concrete: Compression test of cylindrical specimens (ABNT NBR No.5739). https://www.abntcatalogo.com.br/norma.aspx?Q=RXZ5VStweWJKaFJkSE16UEtuRTAyVEYvWHdONHplTXlqbVp5SlExQjg4TT0=
Associação Brasileira de Normas Técnicas. (2009). Água para amassamento do concreto Parte 1: requisitos (ABNT NBR No.15900-1). https://www.abntcatalogo.com.br/norma.aspx?Q=R2k2WVFFZkVjOFhMRVJHK25SamJ4bTdza1ZydHdXZTZaSE1sc3pwMHB0UT0=
Associação Brasileira de Normas Técnicas. (2009). Aggregates for concrete: Specification (ABNT NBR No.7211). https://www.abntcatalogo.com.br/norma.aspx?Q=NEZvK3NHUk5OZEVYdVM2T2t5SkZFNUtpcVgrZlZTZjhGeGx0TmVyK2tqZz0=#
Associação Brasileira de Normas Técnicas. (2014). Design of concrete structures: Procedure (ABNT NBR No.6118).
Associação Brasileira de Normas Técnicas. (2015). Concrete: Procedures for molding and curing specimens (ABNT NBR No.5738). https://www.abntcatalogo.com.br/norma.aspx?Q=SEFrdzZmdi9vajRnUC95bmF2bm5lbkF2NUpJcno3ck1JK05QNDhZMHVPQT0=
Associação Brasileira de Normas Técnicas. (2022). Aggregates: Determination of granulometric – test method (ABNT NBR No. 17054).
Associação Brasileira de Normas Técnicas. (2015). Concretos para fins estruturais – Classificação pela massa específica, por grupos de resistência e consistência (ABNT NBR No.8953). https://www.abntcatalogo.com.br/norma.aspx?Q=QXhjajFQUFZ1bkRXVkNLQVVxNlBobDZ0T3RaUjIyWmEweTdWbWFSVzJwcz0=
Biz, C. E. (2001). Reactive powder concrete [Master’s thesis, School of Engineering]. UNICAMP Campus Repository. https://core.ac.uk/download/pdf/296831426.pdf
Bonneau, O., Poulin Jr, C., Dugat, M., & Tcin, P-C. A. (1996). Reactive Powder Concretes: From Theory to Practice. Concrete International, 18(4), 47–49. Retrieved from https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/1405
Cervieri Júnior, O., Teixeira Junior J. R., Galinari R., Rawet E. L., & Silveira C. T. J. (2014). The beverage sector in Brazil. BNDES. https://web.bndes.gov.br/bib/jspui/bitstream/1408/3462/1/BS%2040%20O%20setor%20de%20bebidas%20no%20Brasil_P.pdf
Dobiszewska, M., Schindler, A. K., & Pichór, W. (2018). Mechanical properties and interfacial transition zone microstructure of concrete with waste basalt powder addition. Construction and Building Materials, 177, 222–229. https://doi.org/10.1016/j.conbuildmat.2018.05.133
Ecycle. (2015). Are all types of glass recyclable? https://www.ecycle.com.br/tipos-de-vidro/
Eva, Z., Kamila, H., Tereza, K., Patrik, S., Jiří, Š., & Ondřej, A. (2020). NDT Methods Suitable for Evaluation the Condition of Military Fortification Construction in the Field. Applied Sciences, 10(22), 8161. https://doi.org/10.3390/app10228161
Gusmão, A. C. (2017). Use of reactive powders concrete as repair material: emphasis on adhesion resistance [Master’s thesis, Federal University of Viçosa], FUV Campus Repository. https://www.locus.ufv.br/bitstream/123456789/17686/1/texto%20completo.pdf
Han, B., Li, Z., Zhang, L., Zeng, S., Yu, X., Han, B., & Ou, J. (2017). Reactive powder concrete reinforced with nano SiO2-coated TiO2. Construction and Building Materials, 148, 104–112. https://doi.org/10.1016/j.conbuildmat.2017.05.065
Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of fine glass as ASR inhibitor in glass aggregate mortars. Construction and Building Materials, 24(7), 1309–1312. https://doi.org/10.1016/j.conbuildmat.2009.12.030
John, V. M., & Agopyan, V. (2000). Reciclagem de resíduos da construção. In . São Paulo: Secretaria de Estado do Meio Ambiente / Cetesb.
Li, L., Zheng, Q., Wang, X., Han, B., & Ou, J. (2022). Modifying fatigue performance of reactive powder concrete through adding pozzolanic nanofillers. International Journal of Fatigue, 156, 106681. https://doi.org/10.1016/j.ijfatigue.2021.106681
Luo, W., Wang, H., Li, X., Wang, X., Wu, Z., Zhang, Y., … Li, X. (2022). Mechanical Properties of Reactive Powder Concrete with Coal Gangue as Sand Replacement. Materials, 15(5), 1807. https://doi.org/10.3390/ma15051807
Matos, A. M., & Sousa-Coutinho, J. (2012). Durability of mortar using waste glass powder as cement replacement. Construction and Building Materials, 36, 205–215. https://doi.org/10.1016/j.conbuildmat.2012.04.027
Paiva, H., Silva, L. M., Labrincha, J. A., & Ferreira, V. M. (2006). Effects of a water-retaining agent on the rheological behaviour of a single-coat render mortar. Cement and Concrete Research, 36(7), 1257–1262. https://doi.org/10.1016/j.cemconres.2006.02.018
Política nacional de resíduos sólidos [recurso eletrônico]. Brasil. [Lei n. 12.305, de 2 de agosto de 2010]. 2. ed. – Brasília: Câmara dos Deputados, Edições Câmara, 2012. 73 p. – (Série legislação; n. 81) Atualizada em 18/5/2012 Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998 e dá outras providências. ISBN 978-85-736-5972-6. http: //fld.com.br/catadores/pdf/politica_residuos_solidos.pdf
Qing-hua, L., Qing-hua, L., Xing, Y., GUO Kang-an, & XU Shi-lang. (2022). Experimental study on the interfacial shear strength between ultra-high toughness cementitious composites and reactive powder concrete. 工程力学, 39(8), 232–244. https://doi.org/10.6052/j.issn.1000-4750.2021.05.0355
Recycloteca. (2016). Glass: history, composition, types, production and recycling. https://www.recicloteca.org.br/material-reciclavel/vidro/
Reindl, J. (2003). Reuse/recycling of glass cullet for non-container uses. Retrieved from https://archive.epa.gov/wastes/conserve/tools/greenscapes/web/pdf/glass.pdf
Resolução CONAMA No.307, DE 5 DE JULHO DE 2002. (n.d.). Retrieved from https://cetesb.sp.gov.br/licenciamento/documentos/2002_Res_CONAMA_307.pdf
Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2
Righi, D., Köhler, L., Tabarelli, A., Kirchhof, L., & Lima, R. (2012) Análise de concretos produzidos com vidro moído quando submetidos à elevadas temperaturas. XXXV Jornadas Sul-Americanas de Engenharia Estrutura, Brazil, 35, 1-13. https://docplayer.com.br/26947425-Analise-de-concretos-produzidos-com-vidro-moido-quando-submetidos-a-elevadas-temperaturas.html
Sagoe-Crentsil, K., Brown, T., & Taylor, A. (2001). Recycled glass as sand replacement in premix concrete: Guide specification. Ed.CSIRO. Retrieved from https://p2infohouse.org/ref/26/25900.pdf
Shelby, J.E. (2020) Introduction to glass science and technology (3rd ed.). Royal Society of Chemistry.
Silva, C. O. (2003). Critical analysis of the requirements and quality criteria of the adhesive mortar [Master’s thesis, Polytechnic School of the University of São Paulo]. USP Campus Repository. https://teses.usp.br/teses/disponiveis/3/3146/tde-03112003-170246/publico/Dissertacaoargamassacolante.pdf
Tafraoui, A., Escadeillas, G., & Vidal, T. (2016). Durability of the ultra-high performances concrete containing metakaolin. Construction and Building Materials, 112, 980–987. https://doi.org/10.1016/j.conbuildmat.2016.02.169
Tokudome, N. (2008, November 7). High-performance concrete is already passed. ITAMBE. https://www.cimentoitambe.com.br/massa-cinzenta/concreto-de-altodesempenho-ja-e-passado/
United States Geological Survey 2020. (2020). Mineral Commodity Summaries. https://doi.org/10.3133/mcs2020
Vanderlei, R. D.; & Giongo, J. S (2006). Experimental analysis of reactive powder concrete: dosage and mechanical properties [Doctoral dissertation, School of Engineering of São Carlos]. USP Campus Repository.
Velichko, E. G., & Vatin, N. I. (2022). Reactive Powder Concrete Microstructure and Particle Packing. Materials, 15(6), 2220. https://doi.org/10.3390/ma15062220
Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z., & Fang, Z. (2015). A review on ultra-high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377. https://doi.org/10.1016/j.conbuildmat.2015.08.095
Wang, Y., Sun, Q., Ding, H., Leng, S., Cui, H., Xu, B., & Cui, H. (2022). Investigation of Interfacial Bonding Properties of Polyurethane Concrete and Cement Concrete/Steel Reinforcement. Advances in Materials Science and Engineering, 2022, 1–28. https://doi.org/10.1155/2022/5644468
Zanotto, E. D., & Mauro, J. C. (2017). The glassy state of matter: Its definition and ultimate fate. Journal of Non-Crystalline Solids, 471, 490–495. https://doi.org/10.1016/j.jnoncrysol.2017.05.019
Zdeb, T. (2017). An analysis of the steam curing and autoclaving process parameters for reactive powder concretes. Construction and Building Materials, 131, 758–766. https://doi.org/10.1016/j.conbuildmat.2016.11.026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Igor Rafael Buttignol de Oliveira; Alan Rodrigo Sorce; Marcos Vinicius Vieira Gaglieri; Fabia Castro Cassanjes; Sylma Carvalho Maestrelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.