Development of alginate granules for thiophenic derivative 5CN06 delivery by ionotropic gelation

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.35898

Keywords:

Granules; Thiophenic Derivative; Ionotropic Gelation; Alginate.

Abstract

The use of biodegradable polysaccharides with gel forming capacity to produce granules has been reported, but there are no reports in the literature associated with new 2-aminothiophene derivatives, which have demonstrated selective antifungal biological activity. Thus, the objective of this study was to evaluate the formation of alginate granules for the delivery of the thiophenic derivative and Active Pharmaceutical Ingredient (API) 5CN06 by ionotropic gelation. An emulsion of 0.1% 5CN06, a 3% sodium alginate solution and a 10% CaCl2 solution was produced. The emulsion and the alginate were mixed under different volumes and, under drip, in the CaCl2 solution, the granules were formed. Changing the proportion of polymer interferes with this yield, which is equal to and above 79.50% ± 0.03. In acid medium, pH 1.2, the granule does not have a significant swelling rate after 180 min. In a pH 7.4 medium it dissolves due to the presence of Na+. Using 10 ml of the emulsion mixtures containing the drug and 10 ml of 3% sodium alginate solution, granules were obtained with better encapsulation efficiency (65.7%). The higher mixing ratio interfered in the swelling capacity and in the thermal stabilization of the drug. Thus, the study of this system was promising, from the experimental conditions, for the understanding of the formation of granules to release the thiophenic derivative compound 5CN06, with antifungal action.

References

Ahirrao, S. P., Gide, P. S., Shrivastav, B., & Sharma, P. (2014). Ionotropic Gelation: A Promising Cross Linking Technique for Hydrogels. Research and Reviews: Journal of Pharmaceutics and Nanotechnology, 2(1).

Cáceres, D., Giménez, B., Márquez-Ruiz, G., Holgado, F., Vergara, C., Romero-Hasler, P., Soto-Bustamante, E., & Robert, P. (2022). Incorporation of hydroxytyrosol alkyl esters of different chain length as antioxidant strategy in walnut oil spray-dried microparticles with a sodium alginate outer layer. Food Chemistry, 395, 133595. https://doi.org/10.1016/j.foodchem.2022.133595

Cruz, R. M. D., Mendonça-Junior, F. J. B., de Mélo, N. B., Scotti, L., de Araújo, R. S. A., de Almeida, R. N., & de Moura, R. O. (2021). Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals, 14(7), 692.

Flores-Hernández, C. G., Cornejo-Villegas, M. L. A., Moreno-Martell, A., & Real, A. del. (2021). Synthesis of a biodegradable polymer of poly (Sodium alginate/ethyl acrylate). Polymers, 13(4), 1–12. https://doi.org/10.3390/polym13040504

Freitas, E. D., Freitas, V. M. S., Rosa, P. C. P., da Silva, M. G. C., & Vieira, M. G. A. (2021). Development and evaluation of naproxen-loaded sericin/alginate beads for delayed and extended drug release using different covalent crosslinking agents. Materials Science and Engineering C, 118. https://doi.org/10.1016/j.msec.2020.111412

Gonçalves, V. S. S., Gurikov, P., Poejo, J., Matias, A. A., Heinrich, S., Duarte, C. M. M., & Smirnova, I. (2016). Alginate-based hybrid aerogel microparticles for mucosal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 107, 160–170. https://doi.org/10.1016/j.ejpb.2016.07.003

Hadi, A., Nawab, A., Alam, F., & Zehra, K. (2022). Alginate/aloe vera films reinforced with tragacanth gum. Food Chemistry: Molecular Sciences, 4. https://doi.org/10.1016/j.fochms.2022.100105

Jana, P., Shyam, M., Singh, S., Jayaprakash, V., & Dev, A. (2021). Biodegradable polymers in drug delivery and oral vaccination. In European Polymer Journal (Vol. 142). Elsevier Ltd. https://doi.org/10.1016/j.eurpolymj.2020.110155

Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. In Current Opinion in Colloid and Interface Science (Vol. 19, Issue 5, pp. 417–427). Elsevier Ltd. https://doi.org/10.1016/j.cocis.2014.07.002

Kalidason, A., & Kuroiwa, T. (2022). Synthesis of chitosan–magnetite gel microparticles with improved stability and magnetic properties: A study on their adsorption, recoverability, and reusability in the removal of monovalent and multivalent azo dyes. Reactive and Functional Polymers, 173. https://doi.org/10.1016/j.reactfunctpolym.2022.105220

Kazemi-Andalib, F., Mohammadikish, M., Divsalar, A., & Sahebi, U. (2022). Hollow microcapsule with pH-sensitive chitosan/polymer shell for in vitro delivery of curcumin and gemcitabine. European Polymer Journal, 162. https://doi.org/10.1016/j.eurpolymj.2021.110887

Khoshdouni Farahani, Z., Mousavi, M., Seyedain Ardebili, S. M., & Bakhoda, H. (2022). Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract. Current Research in Food Science, 5, 157–166. https://doi.org/10.1016/j.crfs.2021.11.014

Kim, E. S., Lee, J. S., & Lee, H. G. (2016). Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Science and Biotechnology, 25(5), 1337–1343. https://doi.org/10.1007/s10068-016-0210-8

Kost, B., Kunicka-Styczyńska, A., Plucińska, A., Rajkowska, K., Basko, M., & Brzeziński, M. (2022). Microfluidic preparation of antimicrobial microparticles composed of l-lactide/1,3-dioxolane (co)polymers loaded with quercetin. Food Chemistry, 396, 133639. https://doi.org/10.1016/j.foodchem.2022.133639

Li, W., Chen, J., Zhao, S., Huang, T., Ying, H., Trujillo, C., Molinaro, G., Zhou, Z., Jiang, T., Liu, W., Li, L., Bai, Y., Quan, P., Ding, Y., Hirvonen, J., Yin, G., Santos, H. A., Fan, J., & Liu, D. (2022). High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28787-7

Lobo, C., Castellari, J., Colman Lerner, J., Bertola, N., & Zaritzky, N. (2020). Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water. International Journal of Biological Macromolecules, 164, 1575–1583. https://doi.org/10.1016/j.ijbiomac.2020.07.253

Lopes, A. M., Santos-Ebinuma, V. D. C., Apolinário, A. C., Mendonça, F. J. B., Damasceno, B. P. G. D. L., Pessoa, A., & da Silva, J. A. (2014). 5CN05 partitioning in an aqueous two-phase system: A new approach to the solubilization of hydrophobic drugs. Process Biochemistry, 49(9), 1555–1561. https://doi.org/10.1016/j.procbio.2014.05.017

Luna, I., Neves, W. W., De Lima-Neto, R.G., Albuquerque, A. P. B., Pitta, M. G. R.; Rêgo, M. J. B. M., Neves, R. P., Scotti, M. T., Mendonça-Junior, F. J. B. (2021). Design, Synthesis and Antifungal Activity of New Schiff Bases Bearing 2-Aminothiophene Derivatives Obtained by Molecular Simplification. Journal od the Brazilian Chemical Society. 32 (5), 1017-1029. https://doi.org/10.21577/0103-5053.20210004

Lutfi, Z., Kalim, Q., Shahid, A., & Nawab, A. (2021). Water chestnut, rice, corn starches and sodium alginate. A comparative study on the physicochemical, thermal and morphological characteristics of starches after dry heating. International Journal of Biological Macromolecules, 184, 476–482. https://doi.org/10.1016/j.ijbiomac.2021.06.128

Mendonça-Junior, F. J. B., Lima-Neto, R. G., Oliveira, T. B., Lima, M. C. A., Pitta, I. R., Galdino, S. L., Cruz, R. M. D., Araújo, R. S. A., & Neves, R. P. (2011). Synthesis and Evaluation of the Antifungal Activity of 2-(Substituted-Amino)-4,5-Dialkyl-Thiophene-3-Carbonitrile Derivatives Antileishmanial Activity of new Thiophene-indole Hybrids View project. https://www.researchgate.net/publication/265725723

Moreira, A. I., Campos, J. B. L. M., & Miranda, J. M. (2022). Characterization of gelatin microparticle production in a flow focusing microfluidic system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647. https://doi.org/10.1016/j.colsurfa.2022.129079

Neves, W. W., Neves, R. P., Macêdo, D. P. C., Eleamne, G. R. A., Kretzchmar, E. A. M., Oliveira, E. E., Medonça-Junior, F. J. B., Lima-Neto, R. G. (2020). Incorporation of 2-amino-thiophene derivative in nanoparticles: enhancement of antifungal activity. Brazilian Journal do Microbiology, 20, 647-655. https://doi.org/10.1007/s42770-020-00248-7

Nyamweya, N. N. (2021). Applications of polymer blends in drug delivery. Future Journal of Pharmaceutical Sciences, 7(1). https://doi.org/10.1186/s43094-020-00167-2

Oliveira, V. S., Cruz, M. M., Bezerra, G. S., Silva, N. E. S., Nogueira, F. H. A., Chaves, G. M.; Sobrinho, J. L. S., Mendonça-Júnior, F. J. B., Damasceno, B. P. G. L., Converti, A., Lima, A. A. N. (2022). Chitosan-Based Films with 2-Aminothiophene Derivative: Formulation, Characterization and Potential Antifungal Activity. Marine Drugs, 20, 103. https://doi.org/10.3390/md20020103

Pinto, E., Queiroz, M. J. R. P., Vale-Silva, L. A., Oliveira, J. F., Begouin, A., Begouin, J. M., & Kirsch, G. (2008). Antifungal activity of synthetic di(hetero)arylamines based on the benzo[b]thiophene moiety. Bioorganic and Medicinal Chemistry, 16(17), 8172–8177. https://doi.org/10.1016/j.bmc.2008.07.042

Reddy, S. G. (2022). Alginates-A Seaweed Product: Its Properties and Applications. In I. Deniz & E. Imamoglu (Eds.), Properties and Applications of Alginates (1st ed., Vol. 1, pp. 0–174). https://doi.org/10.5772/intechopen.94635

Roy, H., Nayak, B. S., Maddiboyina, B., & Nandi, S. (2022). Chitosan based urapidil microparticle development in approach to improve mechanical strength by cold hyperosmotic dextrose solution technique. Journal of Drug Delivery Science and Technology, 103745. https://doi.org/10.1016/j.jddst.2022.103745

Saqib, Md. N., Khaled, B. M., Liu, F., Zhong, F. (2022) Hydrogel beads for designing future foods: Structures, mechanisms, applications, and challenges. Food Hydrocolloids for Health 2, 100073. https://doi.org/10.1016/j.fhfh.2022.100073

Shaikh, M. A. J., Gilhotra, R., Pathak, S., Mathur, M., Iqbal, H. M. N., Joshi, N., & Gupta, G. (2021). Current update on psyllium and alginate incorporate for interpenetrating polymer network (IPN) and their biomedical applications. In International Journal of Biological Macromolecules (Vol. 191, pp. 432–444). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2021.09.115

Soeiro, V. S., Tundisi, L. L., Novaes, L. C. L., Mazzola, P. G., Aranha, N., Grotto, D., Júnior, J. M. O., Komatsu, D., Gama, F. M. P., Chaud, M. v., & Jozala, A. F. (2021). Production of bacterial cellulose nanocrystals via enzymatic hydrolysis and evaluation of their coating on alginate particles formed by ionotropic gelation. Carbohydrate Polymer Technologies and Applications, 2. https://doi.org/10.1016/j.carpta.2021.100155

Sousa, V.D., Driessanack, M., Mendes, I. A. C. (2007) An overview of research designs relevant to nursing: part 1: quantitative research designs. Rev Latino-am Enfermagem, 15(3) 502-7. https://doi.org/10.1590/S0104-11692007000300022

Szabó, T., Mihály, J., Sajó, I., Telegdi, J., & Nyikos, L. (2014). One-pot synthesis of gelatin-based, slow-release polymer microparticles containing silver nanoparticles and their application in anti-fouling paint. Progress in Organic Coatings, 77(7), 1226–1232. https://doi.org/10.1016/j.porgcoat.2014.02.007

Szekalska, M., Sosnowska, K., Czajkowska-Kósnik, A., & Winnicka, K. (2018). Calcium chloride modified alginate microparticles formulated by the spray drying process: A strategy to prolong the release of freely soluble drugs. Materials, 11(9). https://doi.org/10.3390/ma11091522

Trinh, K. T. L., Le, N. X. T., & Lee, N. Y. (2021). Microfluidic-based fabrication of alginate microparticles for protein delivery and its application in the in vitro chondrogenesis of mesenchymal stem cells. Journal of Drug Delivery Science and Technology, 66. https://doi.org/10.1016/j.jddst.2021.102735

Upadhyay, M., Vardhan, H., & Mishra, B. (2020). Natural polymers composed mucoadhesive interpenetrating buoyant hydrogel beads of capecitabine: Development, characterization and in vivo scintigraphy. Journal of Drug Delivery Science and Technology, 55. https://doi.org/10.1016/j.jddst.2019.101480

Wang, X., Hou, X., Zou, P., Huang, A., Zhang, M., & Ma, L. (2022). Cationic starch modified bentonite-alginate nanocomposites for highly controlled diffusion release of pesticides. International Journal of Biological Macromolecules, 213, 123–133. https://doi.org/10.1016/j.ijbiomac.2022.05.148

Winnicka, K. (2021). Special issue: Advanced materials in drug release and drug delivery systems. In Materials (Vol. 14, Issue 4, pp. 1–4). MDPI AG. https://doi.org/10.3390/ma14041042

Yang, D., Gao, K., Bai, Y., Lei, L., Jia, T., Yang, K., & Xue, C. (2021). Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery. International Journal of Biological Macromolecules, 182, 639–647. https://doi.org/10.1016/j.ijbiomac.2021.04.057

Yang, N., Liu, S., & Yang, X. (2015). Molecular simulation of preferential adsorption of CO2over CH4in Na-montmorillonite clay material. Applied Surface Science, 356, 1262–1271. https://doi.org/10.1016/j.apsusc.2015.08.101

Yu, L., Sun, Q., Hui, Y., Seth, A., Petrovsky, N., & Zhao, C. X. (2019). Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. Journal of Colloid and Interface Science, 539, 497–503. https://doi.org/10.1016/j.jcis.2018.12.075

Zhang, C., Grossier, R., Candoni, N., & Veesler, S. (2021). Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. In Biomaterials Research (Vol. 25, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40824-021-00243-5

Zheng, W., Zhang, H., Wang, J., Wang, J., Yan, L., Liu, C., & Zheng, L. (2022). Pickering emulsion hydrogel based on alginate-gellan gum with carboxymethyl chitosan as a pH-responsive controlled release delivery system. International Journal of Biological Macromolecules, 216, 850–859. https://doi.org/10.1016/j.ijbiomac.2022.07.223

Published

18/10/2022

How to Cite

MEDEIROS, K. de A.; ROLIM, M. de O. P.; ANTONINO , R. S. C. M. de Q.; SILVA , D. T. C. da .; MENDONÇA JUNIOR, F. J. B. .; SILVA, J. A. da; DAMASCENO , B. P. G. de L. . Development of alginate granules for thiophenic derivative 5CN06 delivery by ionotropic gelation. Research, Society and Development, [S. l.], v. 11, n. 14, p. e26111435898, 2022. DOI: 10.33448/rsd-v11i14.35898. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35898. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences