Thermal Properties of Cinnamon (Cinnamomum verum) Essential Oil and Its Antibacterial Activity

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35942

Keywords:

Food preservation; Bacterial death time; Thermal performance.

Abstract

The use of new natural antimicrobials has gained attention from the pharmaceutical and food industry, in addition to end consumers, as additive options to conventional antibiotics for resistant microorganisms and also as natural preservatives. Essential oils are secondary plant metabolites that protect plants against predators and pathogens. The aim of this study was to evaluate thermal properties of cinnamon essential oil (EO) and its antibacterial activity. Ten components were identified, with (E) - cinnamic acid (67.70%) being the major component. Cinnamon EO was thermally stable up to 106.6ºC (Tonset) and Tdec occurred at 178.5 °C and Toffset up to 216.0 °C. There was endothermic transition; enthalpy variation (∆H) and activation energy (Ea) was -531.6 KJ Kg-1 and -1.26 ± 0.03 J mol-1, respectively. Bacterial strains showed distinct resistance to tested antibiotics and variation in Minimum Inhibitory Concentration values ranging from 0.8 to 1.6 mg mL-1. Cinnamon EO initiated bactericidal effect against all bacteria tested after four hours of contact and Minimum Bactericide Concentration was 0.4 mg mL-1, exception for Bacillus cereus (0.8 mg mL-1). Analysis of cinnamon thermal properties EO showed its stable thermal performance up to 106.6 °C and broad spectrum, that may be an antimicrobial proposal.

References

Adams, R. P. (2017). Identification of Essential oil components by gas chromatography/mass spectrometry, 4.1rd ed, Carol Stream: Allured publishing.

Batista, R. D., Pereira, C. F., Oliveira, A. I. T., & Silva, J. F. M. (2018). Contaminação por Bacillus cereus e os riscos gerados através da intoxicação alimentar. Revista Desafios, 5, 30-40.

Beraldo. C., Daneluzzi, N. S., Scanavacca, J., Doyama, J. T., Júnior, A. F., & Moritz, C. M. F. (2013). Eficiência de óleos essenciais de canela e cravo-da-índia como sanitizantes na indústria de alimentos. Pesquisa Agropecuária Tropical, 43, 4, 436-440.

BrCast. (2018). Tabelas de CQ BrCAST-EUCAST. Brazilian Committee on Antimicrobial Susceptibility Testing. https:///C:/Users/Acer/Desktop/defesa/Tabelas-Controle-de-Qualidade-Rotina-e-Estendido-BrCAST-03-2016-R.pdf.

Budri, P. E., Silva, N. C. C., Bonsaglia, E. C. R., Fernades Junior, A., Araujo Junior, J. P. Doyama, J. L., & Rall, V. L. (2015). Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. Journal Of Dairy Science, 98, 5899-5904. dhttps://doi.org/10.3168/jds.2015-9442

Campos, S. C., Silva, C. G., Campana, P. R. V., & Almeida, V. L. (2016). Toxicity of plant species. Revista Brasileira de Plantas Medicinais, 18, 373-382. https://doi.org/10.1590/1983-084X/15_057

Chen, P., Sun, J., & Ford, P. (2014). Differentiation of the four major species of Cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. Journal Agricultural Food Chemical, 62, 2516-2521. 10.1021 / jf405580c

Clinical Laboratory Standards Institute (CLSI) (2009). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically, 7th. Approved standard M7-A8.

Clinical Laboratory Standards Institute (CLSI) (2017). Performance Standards for Antimicrobial Susceptibility Testing: Table 2C Staphylococcus spp. M02 and M07. 27 th ed. CLSI supplement M100.

Ferreira, A. A., Mendonça, R. C. S., Tette, P. A. S., Soares, A. S., & Carvalho, M.M. (2015). Identificação fenotípica e genotípica de cepas de estafilococos oriundas de uma unidade de abate de aves. Multi-Science Journal, 1, 50-58. 10.33837 / msj.v1i2.85

Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. https://doi.org/10.1016/j.foodcont.2014.05.047

Jeyaratnam, N., Nour, A. H., Kanthasamy, R., Nour, A. H., Yuvaraj, A. R., & Akindoyoa, J. O. (2016). Essential oil from Cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Industrial Crops Products, 92, 57–66. https://doi.org/10.1016/j.indcrop.2016.07.049

Jomezadeh, N., Babamoradi, S., Kalantar, E., & Javaherizadeh, H. (2014). Isolation and antibiotic susceptibility of Shigella species from stool samples among hospitalized children in Abadan, Iran. Gastroenterology and Hepatology From Bed to Bench, 7, 218–223.

Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal Pharmacy Pharmacology, 2, 377-392.

Kaskatepe, B., Kiymaci, M. E., Simsek, D., Erol, H. B., & Erdem, S. A. (2016). Comparison of the contents and antimicrobial activities of comercial and natural Cinnamon oils. Indian Journal Pharmaceutical Science, 78, 541-548. doi: 10.4172 / ciências farmacêuticas. 1000150

Lopes, W.A., & Fascio, M. (2004). Scheme for interpreting spectra of organic substances in the infrared region. Química Nova, 27, 670-673. https://doi.org/10.1590/S0100-40422004000400025

Mantilla, S. P. S., & Franco, R. M. (2012). In vitro microbial sensitivity profile of pathogenic Escherichia coli strains isolated from beef. Colloquium Agrariae, 8, 10-17. https://revistas.unoeste.br/index.php/ca/article/view/360.

Mianowski, A., Tomaszewicz, M., Siudyga, T., & Radko, T. (2014). Estimation of kinetic parameters based on finite time of reaction/process: Thermogravimetric studies at isothermal and dynamic conditions. Reaction Kinetics, Mechanisms, and Catalysis, 111, 45-69. 10.1007/s11144-013-0613-y

Miranda, C. A. S. F., Cardoso, M. G., Batista, L. R., Rodrigues, L. M. A., & Figueiredo, A.C.S. (2016). Essential oils from leaves of different species: antioxidant and antibacterial properties on growth pathogenic species. Revista Ciência Agronômica, 47, 213-220.: https://doi.org/10.5935/1806-6690.20160025

National Institute of Standards and Technology (NIST). (2019). Nist Chemistry book on the web, SRD 69. https://webbook.nist.gov/chemistry/.

Nieto, G. (2017). Biological Activities of Three Essential Oils of the Lamiaceae Family. Medicines, 4, 63,1-10. 10.3390/medicines4030063.

Pandini, J. A., Pinto, F. G. S., Muller, J. M., Weber, L. D., & Moura, A. C. (2014). Occurrence and antimicrobial resistance profile of Salmonella spp. isolated from aviaries in Paraná, Brazil. Arquivos do Instituto Biológico, 20, 1-6. https://doi.org/10.1590/1808-1657000352013

Ribeiro-Santos, R., Andradea, M., Madella, D., Martinazzo, A. P., Moura, L. A. G., Melo, N. R., & Sanches-Silva, A. (2017). Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends in Food Science Technology, 62, 154-169.10.1016/J.TIFS.2017.02.011

Ruschel, C. F. C., Te Huang, C., Samiose, D., & Ferrão, M. F. (2014). Exploratory analysis applied to attenuated total reflection spectra in the Fourier Transform Infrared (ATR-FTIR) of biodiesel/diesel blends. Química Nova, 37, 810-815. http://dx.doi.org/10.5935/0100-4042.20140130

Santos, I. A. L., Nogueira, J. M. R., & Mendonça, F. C. R. (2015). Antimicrobial resistance mechanisms in Pseudomonas aeruginosa. Revista Brasileira Análises Clinicas, 47, 5-12. https://www.arca.fiocruz.br/handle/icict/15160

Sarto, M. P. M., & Zanusso Junior, G. (2014). Antimicrobial activity of essential oils. Revista Uningá Review, 20, 98-102. <http://revista.uninga.br/index.php/uningareviews/article/view/1559>.

Vizzoto, M., Krolow, A. C., & Weber, G. E. B. (2016). Secondary metabolites found in plants and their importance. Embrapa Clima Temperado, document 316, p. 16.

Yang, K., Liu, A., Hu, A., Li, J., Zen, Z., Liu, Y., & Li, C. (2021). Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control, 123, 107783. doi:10.1016/j.foodcont.2020.10778.

Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. Y. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. 10.17795 / jhealthscope-21808

Downloads

Published

15/10/2022

How to Cite

FRANCISCATO, L. M. S. dos S. .; ARIATI, A. M. .; PICOLLOTO, A. M. .; RAIA, R. Z.; BARBOSA, V. A.; BITTENCOURT, P. R. S. .; SOUZA , M. R. dos R. .; SAKAI, O. A. .; ÂNGELO, E. A. .; MORITZ, C. M. F. Thermal Properties of Cinnamon (Cinnamomum verum) Essential Oil and Its Antibacterial Activity. Research, Society and Development, [S. l.], v. 11, n. 13, p. e567111335942, 2022. DOI: 10.33448/rsd-v11i13.35942. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35942. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences