Green synthesis of Fe3O4@ZnO-supported Pd nanoparticles for oxidation and hydrogenation reactions in liquid systems
DOI:
https://doi.org/10.33448/rsd-v11i14.36004Keywords:
Nanomaterials; Magnetic separation; Biosynthesis.Abstract
In this work Pd nanoparticles immobilized on a hybrid solid support comprised of Fe3O4 coated by a ZnO layer were synthesized by a green method which makes use of water, a biological substrate from a local plant (Rhamnidium elaeocarpum) and inexpensive Fe3+ and Zn2+ salts. 1H-NMR and 13C-NM revealed β-sitosterol as the main component of the biological substrate. The catalytic support containing Pd nanoparticles was applied in three model solid-liquid catalytic systems, namely: alcohol oxidation, nitrocompound reduction and olefin hydrogenation. For the alcohol oxidation, benzyl alcohol was used as the substrate in a solvent-free condition with high selectivity towards benzaldehyde, and a single sample of the catalyst could be recycled up to 11 times before any loss of activity could be detected. TOF (turnover frequency) as high as 13,686 h-1 for the substrate oxidation was achieved with an average yield rate of 45.4% for formation of benzaldehyde and 81.6% of average substrate conversion after 6 catalytic cycles. For the hydrogenation experiments using cyclohexene and 4-nitrophenol as model substrates, conversion as high as 96% to 4-aminophenol and cyclohexane, respectively, was achieved after 30 minutes of reaction. Furthermore, a single sample of the catalyst could be recycled for up to 17 times for the reduction of 4-nitrophenol, and 21 times in the hydrogenation of cyclohexene. Catalytic recycling for all studied reactions was straightforward after due to the superparamagnetic property of the material, and catalyst isolation after each batch could be rapidly carried out using a Nd magnet. These results suggests that a highly active and stable catalytic system based on Pd nanoparticles supported on a multifunctional solid could be fabricated using green and inexpensive biomass under operationally simple synthesis conditions.
References
Al-Nuairi, A. G., Mosa, K. A., Mohammad, M. G., El-Keblawy, A., Soliman, S., & Alawadhi, H. (2020). Biosynthesis, Characterization, and Evaluation of the Cytotoxic Effects of Biologically Synthesized Silver Nanoparticles from Cyperus conglomeratus Root Extracts on Breast Cancer Cell Line MCF-7. Biological Trace Element Research, 194(2), 560–569. https://doi.org/10.1007/s12011-019-01791-7
Ammar, S. H., Abdulnabi, W. A., & kader, H. D. A. (2020). Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ZnO/PMOs). Environmental Nanotechnology, Monitoring & Management, 13, 100289. https://doi.org/https://doi.org/10.1016/j.enmm.2020.100289
Ayaz Ahmed, K. B., Subramaniam, S., Veerappan, G., Hari, N., Sivasubramanian, A., & Veerappan, A. (2014). β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Advances, 4(103), 59130–59136. https://doi.org/10.1039/C4RA10626A
Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., & Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133–146. https://doi.org/https://doi.org/10.1016/j.jcat.2016.03.017
Bahtiar, S., Taufiq, A., Utomo, J., Hidayat, N., & Sunaryono, S. (2019). Structural Characterizations of Magnetite/Zinc Oxide Nanocomposites Prepared by Co-precipitation Method. IOP Conference Series: Materials Science and Engineering, 515, 12076. https://doi.org/10.1088/1757-899X/515/1/012076
Bankar, D. B., Hawaldar, R. R., Arbuj, S. S., Shinde, S. T., Gadde, J. R., Rakshe, D. S., Amalnerkar, D. P., & Kanade, K. G. (2020). Palladium loaded on ZnO nanoparticles: Synthesis, characterization and application as heterogeneous catalyst for Suzuki–Miyaura cross-coupling reactions under ambient and ligand-free conditions. Materials Chemistry and Physics, 243, 122561. https://doi.org/https://doi.org/10.1016/j.matchemphys.2019.122561
Barrios, C. E., Bosco, M. V, Baltanás, M. A., & Bonivardi, A. L. (2015). Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites. Applied Catalysis B: Environmental, 179, 262–275. https://doi.org/https://doi.org/10.1016/j.apcatb.2015.05.030
Batista, F. R. M., da S. Melo, I. E. M., dos Santos Pereira, L., Lima, A. A. G., Bashal, A. H., Costa, J. C. S., Magalhães, J. L., Lima, F. C. A., de Moura, C., Garcia, M. A. S., & de Moura, E. M. (2020). Screening of the Au:Pt Atomic Ratio Supported in SrCO3: Effects on the Performance of the Solvent-Free Oxidation of Benzyl Alcohol. Journal of the Brazilian Chemical Society, 31, 488. https://doi.org/https://doi.org/10.21577/0103-5053.20190207
Cable, R. E., & Schaak, R. E. (2007). Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors. Chemistry of Materials, 19(16), 4098–4104. https://doi.org/10.1021/cm071214j
Camargo, P., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research-Ibero-American Journal of Materials - MATER RES-IBERO-AM J MATER, 12. https://doi.org/10.1590/S1516-14392009000100002
Cao, P., Yang, Z., Navale, S. T., Han, S., Liu, X., Liu, W., Lu, Y., Stadler, F. J., & Zhu, D. (2019). Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sensors and Actuators B: Chemical, 298, 126850. https://doi.org/https://doi.org/10.1016/j.snb.2019.126850
Chuc, L. T. N., Chen, C.-S., Lo, W.-S., Shen, P.-C., Hsuan, Y.-C., Tsai, H.-H. G., Shieh, F.-K., & Hou, D.-R. (2017). Long-Range Olefin Isomerization Catalyzed by Palladium(0) Nanoparticles. ACS Omega, 2(2), 698–711. https://doi.org/10.1021/acsomega.6b00509
Cristoforetti, G., Pitzalis, E., Spiniello, R., Ishak, R., & Muniz-Miranda, M. (2011). Production of Palladium Nanoparticles by Pulsed Laser Ablation in Water and Their Characterization. The Journal of Physical Chemistry C, 115(12), 5073–5083. https://doi.org/10.1021/jp109281q
da Silva, F. P., Fiorio, J. L., & Rossi, L. M. (2017). Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces. ACS Omega, 2(9), 6014–6022. https://doi.org/10.1021/acsomega.7b00836
da Silva, R. A., Jacinto, M. J., Silva, V. C., & Cabana, D. C. (2018). Urea-assisted fabrication of Fe3O4@ZnO@Au composites for the catalytic photodegradation of Rhodamine-B. Journal of Sol-Gel Science and Technology, 86(1), 94–103. https://doi.org/10.1007/s10971-018-4607-0
Gaikwad, D. S., Undale, K. A., Kalel, R. A., & Patil, D. B. (2019). Acacia concinna pods: a natural and new bioreductant for palladium nanoparticles and its application to Suzuki–Miyaura coupling. Journal of the Iranian Chemical Society, 16(10), 2135–2141. https://doi.org/10.1007/s13738-019-01682-7
Galvanin, F., Sankar, M., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J., & Gavriilidis, A. (2018). On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal, 342, 196–210. https://doi.org/https://doi.org/10.1016/j.cej.2017.11.165
Guo, Y., Gao, Y., Li, X., Zhuang, G., Wang, K., Zheng, Y., Sun, D., Huang, J., & Li, Q. (2019). Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 362, 41–52. https://doi.org/https://doi.org/10.1016/j.cej.2019.01.012
Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J., & Walke, P. S. (2019). Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sensors and Actuators B: Chemical, 293, 83–92. https://doi.org/https://doi.org/10.1016/j.snb.2019.04.086
Hu, Z., Zhou, G., Xu, L., Yang, J., Zhang, B., & Xiang, X. (2019). Preparation of ternary Pd/CeO2-nitrogen doped graphene composites as recyclable catalysts for solvent-free aerobic oxidation of benzyl alcohol. Applied Surface Science, 471, 852–861. https://doi.org/https://doi.org/10.1016/j.apsusc.2018.12.067
Ismaeel, S., Jaber, H., & Zayed, R. (2020). ISOLATION OF β-SITOSTEROL FROM TAMARIX APHYLLA OF IRAQ. Biochem. Cell. Arch. 20(2), 6497–6502. https://doi.org/https://connectjournals.com/03896.2020.20.6497
Jacinto, M. J., Souto, R. S., Silva, V. C. P., Prescilio, I. C., Kauffmann, A. C., Soares, M. A., de Souza, J. R., Bakuzis, A. F., & Fontana, L. C. (2021). Biosynthesis of Cube-Shaped Fe3O4 Nanoparticles for Removal of Dyes Using Fenton Process. Water, Air, & Soil Pollution, 232(7), 270. https://doi.org/10.1007/s11270-021-05233-w
Khataee, A. R., Karimi, A., Soltani, R. D. C., Safarpour, M., Hanifehpour, Y., & Joo, S. W. (2014). Europium-doped ZnO as a visible light responsive nanocatalyst: Sonochemical synthesis, characterization and response surface modeling of photocatalytic process. Applied Catalysis A: General, 488, 160–170. https://doi.org/https://doi.org/10.1016/j.apcata.2014.09.039
Kibis, L. S., Titkov, A. I., Stadnichenko, A. I., Koscheev, S. V, & Boronin, A. I. (2009). X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Applied Surface Science, 255(22), 9248–9254. https://doi.org/https://doi.org/10.1016/j.apsusc.2009.07.011
Kuai, L., Chen, Z., Liu, S., Kan, E., Yu, N., Ren, Y., Fang, C., Li, X., Li, Y., & Geng, B. (2020). Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nature Communications, 11(1), 48. https://doi.org/10.1038/s41467-019-13941-5
Li, X., Feng, J., Sun, J., Wang, Z., & Zhao, W. (2019). Solvent-Free Catalytic Oxidation of Benzyl Alcohol over Au-Pd Bimetal Deposited on TiO2: Comparison of Rutile, Brookite, and Anatase. Nanoscale Research Letters, 14(1), 394. https://doi.org/10.1186/s11671-019-3211-8
Li, X., Zeng, Z., Hu, B., Qian, L., & Hong, X. (2017). Surface-Atom Dependence of ZnO-Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. ChemCatChem, 9(6), 924–928. https://doi.org/https://doi.org/10.1002/cctc.201601119
Liqiang, J., Baiqi, W., Baifu, X., Shudan, L., Keying, S., Weimin, C., & Honggang, F. (2004). Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. Journal of Solid State Chemistry, 177(11), 4221–4227. https://doi.org/https://doi.org/10.1016/j.jssc.2004.08.016
López-Salazar, H., Camacho-Díaz, B. H., Ávila-Reyes, S. V, Pérez-García, M. D., González- Cortazar, M., Arenas Ocampo, M. L., & Jiménez-Aparicio, A. R. (2019). Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. In Molecules (Vol. 24, Issue 21). https://doi.org/10.3390/molecules24213926
Ma, M., Yang, Y., Li, W., Feng, R., Li, Z., Lyu, P., & Ma, Y. (2019). Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. Journal of Materials Science, 54(1), 323–334. https://doi.org/10.1007/s10853-018-2868-1
Mallat, T., & Baiker, A. (2004). Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chemical Reviews, 104(6), 3037–3058. https://doi.org/10.1021/cr0200116
Miceli, M., Frontera, P., Macario, A., & Malara, A. (2021). Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11(5). https://doi.org/https://doi.org/10.3390/catal11050591
Miedziak, P. J., He, Q., Edwards, J. K., Taylor, S. H., Knight, D. W., Tarbit, B., Kiely, C. J., & Hutchings, G. J. (2011). Oxidation of benzyl alcohol using supported gold–palladium nanoparticles. Catalysis Today, 163(1), 47–54. https://doi.org/https://doi.org/10.1016/j.cattod.2010.02.051
Moon, J., Park, J.-A., Lee, S.-J., Zyung, T., & Kim, I.-D. (2010). Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors and Actuators B: Chemical, 149(1), 301–305. https://doi.org/https://doi.org/10.1016/j.snb.2010.06.033
Munvera, A., Nyemb, J. N., Alfred Ngenge, T., Mafo, M. A. F., Nuzhat, S., & Nkengfack, A. E. (2021). First report of isolation of antibacterial ceramides from the leaves of Euclinia longiflora Salisb. Natural Product Communications, 16(11), 1934578X211048628. https://doi.org/10.1177/1934578X211048628
Ododo, M. M., Choudhury, M. K., & Dekebo, A. H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. SpringerPlus, 5(1), 1210. https://doi.org/10.1186/s40064-016-2894-x
Odoom-Wubah, T., Li, Q., Wang, Q., Rukhsana Usha, M. Z., Huang, J., & Li, Q. (2019). Template-free synthesis of carbon self-doped ZnO superstructures as efficient support for ultra fine Pd nanoparticles and their catalytic activity towards benzene oxidation. Molecular Catalysis, 469, 118–130. https://doi.org/https://doi.org/10.1016/j.mcat.2019.03.013
Ökte, A. N. (2014). Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Applied Catalysis A: General, 475, 27–39. https://doi.org/https://doi.org/10.1016/j.apcata.2014.01.019
Parmanand, Kumari, S., Mittal, A., Kumar, A., Krishna, & Sharma, S. K. (2019). Palladium Nanoparticles Immobilized on Schiff Base-Functionalized Graphene-Oxide: Application in Carbon-Carbon Cross-Coupling Reactions. ChemistrySelect, 4(36), 10828–10837. https://doi.org/https://doi.org/10.1002/slct.201902242
Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Lv, D.-M., Sun, J., Chen, Y., & Guo, G.-C. (2015). Enhanced Stability of Pd/ZnO Catalyst for CO Oxidative Coupling to Dimethyl Oxalate: Effect of Mg2+ Doping. ACS Catalysis, 5(7), 4410–4417. https://doi.org/10.1021/acscatal.5b00365
Raimundo e Silva, J. P., Policarpo, I. da S., Chaves, T. P., Coutinho, H. D. M., & Alves, H. da S. (2020). A glycosylated β-Sitosterol, isolated from Tacinga inamoena (Cactaceae), enhances the antibacterial activity of conventional antibiotics. South African Journal of Botany, 133, 193–200. https://doi.org/https://doi.org/10.1016/j.sajb.2020.07.017
Raj R, K., D, E., & S, R. (2020). β-Sitosterol-assisted silver nanoparticles activates Nrf2 and triggers mitochondrial apoptosis via oxidative stress in human hepatocellular cancer cell line. Journal of Biomedical Materials Research Part A, 108(9), 1899–1908. https://doi.org/https://doi.org/10.1002/jbm.a.36953
Rajeswari, R., & Gurumallesh Prabu, H. (2020). Palladium – Decorated reduced graphene oxide/zinc oxide nanocomposite for enhanced antimicrobial, antioxidant and cytotoxicity activities. Process Biochemistry, 93, 36–47. https://doi.org/https://doi.org/10.1016/j.procbio.2020.03.010
Rossi, L. M., Silva, F. P., Vono, L. L. R., Kiyohara, P. K., Duarte, E. L., Itri, R., Landers, R., & Machado, G. (2007). Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chemistry, 9(4), 379–385. https://doi.org/10.1039/B612980C
Shanmugam, P., Murthy, A. P., Theerthagiri, J., Wei, W., Madhavan, J., Kim, H.-S., Maiyalagan, T., & Xie, J. (2019). Robust bifunctional catalytic activities of N-doped carbon aerogel-nickel composites for electrocatalytic hydrogen evolution and hydrogenation of nitrocompounds. International Journal of Hydrogen Energy, 44(26), 13334–13344. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.03.225
Stadler, L., Homafar, M., Hartl, A., Najafishirtari, S., Colombo, M., Zboril, R., Martin, P., Gawande, M. B., Zhi, J., & Reiser, O. (2019). Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry & Engineering, 7(2), 2388–2399. https://doi.org/10.1021/acssuschemeng.8b05222
Vieira, Y., Silvestri, S., Leichtweis, J., Jahn, S. L., de Moraes Flores, É. M., Dotto, G. L., & Foletto, E. L. (2020). New insights into the mechanism of heterogeneous activation of nano–magnetite by microwave irradiation for use as Fenton catalyst. Journal of Environmental Chemical Engineering, 8(3), 103787. https://doi.org/https://doi.org/10.1016/j.jece.2020.103787
Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., & Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 75, 66–71. https://doi.org/https://doi.org/10.1016/j.physe.2015.08.040
Wu, W., Zhang, S., Xiao, X., Zhou, J., Ren, F., Sun, L., & Jiang, C. (2012). Controllable Synthesis, Magnetic Properties, and Enhanced Photocatalytic Activity of Spindlelike Mesoporous α-Fe2O3/ZnO Core–Shell Heterostructures. ACS Applied Materials & Interfaces, 4(7), 3602–3609. https://doi.org/10.1021/am300669a
Yadav, D., & Awasthi, S. K. (2020). A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chemistry, 22(13), 4295–4303. https://doi.org/10.1039/D0GC01469A
Yang, J., Zhu, Y., Fan, M., Sun, X., Wang, W. D., & Dong, Z. (2019). Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. Journal of Colloid and Interface Science, 554, 157–165. https://doi.org/https://doi.org/10.1016/j.jcis.2019.07.006
Yilmaz, F. (2018). Heterogen Catalysis in Sustainable Green Solvent: Alkenes Hydrogenation With New Silica Immobilized Palladium Complex Containing S,O-Chelating Ligand. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 1. https://doi.org/10.18038/aubtda.409518
Yu, T., Jiao, J., Song, P., Nie, W., Yi, C., Zhang, Q., & Li, P. (2020). Recent Progress in Continuous-Flow Hydrogenation. ChemSusChem, 13(11), 2876–2893. https://doi.org/https://doi.org/10.1002/cssc.202000778
Zhang, H., Guo, W., Lu, N., & Fan, B. (2020). Solvent-free selective oxidation of aromatic alcohol with O2 over MgAl-LDH supported Pd nanoparticles: Effects of preparation methods and solvents. Materials Chemistry and Physics, 252, 123193. https://doi.org/https://doi.org/10.1016/j.matchemphys.2020.123193
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Robson da Silva Souto; Samara da Silva Razini; Angélica Correa Kauffmann; Virgínia Claudia Paulino Silva; Paulo Teixeira de Sousa Jr; Andris Bakuzis; Luis Cesar Fontana; Marcos José Jacinto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.