Emerging technologies for photovoltaic solar cell production: a review
DOI:
https://doi.org/10.33448/rsd-v11i17.36068Keywords:
Clean energy; Photovoltaic cell; Alternative materials; Greater efficiency.Abstract
Among the energy generated from renewable sources, the photovoltaic one stands out. This type of energy is becoming more attractive every day, since it has zero greenhouse gas emissions. In addition to having sunlight as its source, that is, an inexhaustible supply. From the above, in view of the importance of renewable energies and the recent rise of photovoltaic technologies, the objective of the present study is to explain, through an integrative literature review, the ascendancy to the application of emerging technologies for the production of photovoltaic solar cells. The review was carried out through searches of scientific technical documents available in databases such as Scielo, Scopus, ScienceDirect, Capes Periodicals and in scientific repositories. Photovoltaic energy converts solar energy into electrical energy and has proven to be a sustainable and practical solution to the challenge of meeting the growing global demand for energy. Silicon is the most widely disseminated material in photovoltaic technology and in the production of solar cells. Third or last generation cells are also called emerging technologies, since most are in the experimental phase, encompassing a variety of materials that are mostly organic. The search for new technologies and materials that can improve various aspects of photovoltaic cells and panels such as strength, durability and greater efficiency in energy conversion is a current demand.
References
Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., & Redorici, L. (2019). Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 4(1), 1548305. https://doi.org/10.1080/23746149.2018.1548305
Cole, J. M., Pepe, G., Al Bahri, O. K., & Cooper, C. B. (2019). Cosensitization in dye-sensitized solar cells. Chemical reviews, 119(12), 7279-7327. https://doi.org/10.1021/acs.chemrev.8b00632
de Oliveira, A. M., Mario, M. C., & Pacheco, M. T. T. (2021). Fontes renováveis de energia elétrica: evolução da oferta de energia fotovoltaica no Brasil até 2050. Brazilian Applied Science Review, 5(1), 257-272. https://doi.org/10.34115/basrv5n1-016
Ferreira, A. S., & Fenato, A. J. (2017). Potencial Impacto Ambiental Fotovoltaica. Revista Científica Multidisciplinar Núcleo do Conhecimento, 1, 228-242. https://www.nucleodoconhecimento.com.br/ engenharia-eletrica/ambiental-fotovoltaica
Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234-246. https://doi.org/10.1016/j.rser.2016.09.097
Green, M. A. (2019). Photovoltaic technology and visions for the future. Progress in Energy, 1(1), 013001. https://iopscience.iop.org/ article/10.1088/2516-1083/ab0fa8/meta
Gul, M., Kotak, Y., & Muneer, T. (2016). Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 34(4), 485-526. https://doi.org/10.1177/0144598716650552
Haschke, J., Dupré, O., Boccard, M., & Ballif, C. (2018). Silicon heterojunction solar cells: Recent technological development and practical aspects-from lab to industry. Solar Energy Materials and Solar Cells, 187, 140-153. https://doi.org/10.1016/j.solmat.2018.07.018
Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284-297. http://dx.doi.org/10.1016/j.rser.2014.08.046
Lima, P. D. T. D., Neto, M. M., & Abrahão, R. (2022). Análise dos processos de avaliação de impacto ambiental em usinas fotovoltaicas no Nordeste do Brasil. Revista Brasileira de Geografia Física, 15(03), 1260-1273. https://periodicos.ufpe.br/revistas/rbgfe/article/viewFile/252652/41290
Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Procel-Moya, P., Tamboli, A. C., Weber, K., Boccard, M., Isabella, O., Yang, X., & Sun, B. (2020). High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering: R: Reports, 142, 100579. https://doi.org/10.1016/j.mser.2020.100579
Louwen, A., Van Sark, W., Schropp, R., & Faaij, A. (2016). A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 147, 295-314. https://doi.org/10.1016/j.solmat.2015. 12.026
Ogbomo, O. O., Amalu, E. H., Ekere, N. N., & Olagbegi, P. O. (2017). A review of photovoltaic module technologies for increased performance in tropical climate. Renewable and Sustainable Energy Reviews, 75, 1225-1238. https://doi.org/10.1016/j.rser.2016.11.109
Oliveira, A. T. E. de, Sobreira, A. A., Costa, H. F., Ferreira, J. dos S., & Perez, C. A. S. (2022). A energia solar fotovoltaica: transformação, evolução, aspectos ambientais e abordagens na sala de aula. Research, Society and Development, 11(9), e25811932533. https://doi.org/10.33448/rsd-v11i9.32533
Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424. https://doi.org/10.1126/science.aad4424
Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-sensitized solar cells: fundamentals and current status. Nanoscale research letters, 13(1), 1-46. https://nanoscalereslett.springeropen.com/ articles/10.1186/s11671-018-2760-6
Teixeira, M. A. C. (2019). Perspectivas do potencial estratégico de novos materiais alternativos ao silício para a produção de células solares fotovoltaicas. 121 f. Dissertação (Programa de Mestrado em Cidades Inteligentes e Sustentáveis) - Universidade Nove de Julho, São Paulo. http://bibliotecatede.uninove.br/handle/tede/2149
Teixeira, M. A. C., Ramos, H. R., & Aguiar, A. O. (2021) Perspectivas de Novos Materiais Alternativos ao Silício para a produção de Células Solares Fotovoltaicas: Uma Revisão Sistemática da Literatura. Revista Nacional de Gerenciamento de Cidades, 9(71) 48 – 62, https://publicacoes. amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/2953/2777
Vieira, A. C. F. (2021). Energias renováveis e sua eficiência na nova economia energética no Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(18), 211-223. https://doi.org/10.21438/rbgas(2021)081813
Yamaguchi, M., Dimroth, F., Geisz, J. F., & Ekins-Daukes, N. J. (2021). Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics, 129(24), 240901. https://aip.scitation.org/doi/full/10.1063/5.0048653
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gabriel Ashley Moreira de Lima; Vinicius Oliveira Souza; Rogério Santiago Lopes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.