Emerging technologies for photovoltaic solar cell production: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.36068

Keywords:

Clean energy; Photovoltaic cell; Alternative materials; Greater efficiency.

Abstract

Among the energy generated from renewable sources, the photovoltaic one stands out. This type of energy is becoming more attractive every day, since it has zero greenhouse gas emissions. In addition to having sunlight as its source, that is, an inexhaustible supply. From the above, in view of the importance of renewable energies and the recent rise of photovoltaic technologies, the objective of the present study is to explain, through an integrative literature review, the ascendancy to the application of emerging technologies for the production of photovoltaic solar cells. The review was carried out through searches of scientific technical documents available in databases such as Scielo, Scopus, ScienceDirect, Capes Periodicals and in scientific repositories. Photovoltaic energy converts solar energy into electrical energy and has proven to be a sustainable and practical solution to the challenge of meeting the growing global demand for energy. Silicon is the most widely disseminated material in photovoltaic technology and in the production of solar cells. Third or last generation cells are also called emerging technologies, since most are in the experimental phase, encompassing a variety of materials that are mostly organic. The search for new technologies and materials that can improve various aspects of photovoltaic cells and panels such as strength, durability and greater efficiency in energy conversion is a current demand.

References

Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., & Redorici, L. (2019). Silicon solar cells: toward the efficiency limits. Advances in Physics: X, 4(1), 1548305. https://doi.org/10.1080/23746149.2018.1548305

Cole, J. M., Pepe, G., Al Bahri, O. K., & Cooper, C. B. (2019). Cosensitization in dye-sensitized solar cells. Chemical reviews, 119(12), 7279-7327. https://doi.org/10.1021/acs.chemrev.8b00632

de Oliveira, A. M., Mario, M. C., & Pacheco, M. T. T. (2021). Fontes renováveis de energia elétrica: evolução da oferta de energia fotovoltaica no Brasil até 2050. Brazilian Applied Science Review, 5(1), 257-272. https://doi.org/10.34115/basrv5n1-016

Ferreira, A. S., & Fenato, A. J. (2017). Potencial Impacto Ambiental Fotovoltaica. Revista Científica Multidisciplinar Núcleo do Conhecimento, 1, 228-242. https://www.nucleodoconhecimento.com.br/ engenharia-eletrica/ambiental-fotovoltaica

Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234-246. https://doi.org/10.1016/j.rser.2016.09.097

Green, M. A. (2019). Photovoltaic technology and visions for the future. Progress in Energy, 1(1), 013001. https://iopscience.iop.org/ article/10.1088/2516-1083/ab0fa8/meta

Gul, M., Kotak, Y., & Muneer, T. (2016). Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation, 34(4), 485-526. https://doi.org/10.1177/0144598716650552

Haschke, J., Dupré, O., Boccard, M., & Ballif, C. (2018). Silicon heterojunction solar cells: Recent technological development and practical aspects-from lab to industry. Solar Energy Materials and Solar Cells, 187, 140-153. https://doi.org/10.1016/j.solmat.2018.07.018

Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable and Sustainable Energy Reviews, 41, 284-297. http://dx.doi.org/10.1016/j.rser.2014.08.046

Lima, P. D. T. D., Neto, M. M., & Abrahão, R. (2022). Análise dos processos de avaliação de impacto ambiental em usinas fotovoltaicas no Nordeste do Brasil. Revista Brasileira de Geografia Física, 15(03), 1260-1273. https://periodicos.ufpe.br/revistas/rbgfe/article/viewFile/252652/41290

Liu, Y., Li, Y., Wu, Y., Yang, G., Mazzarella, L., Procel-Moya, P., Tamboli, A. C., Weber, K., Boccard, M., Isabella, O., Yang, X., & Sun, B. (2020). High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering: R: Reports, 142, 100579. https://doi.org/10.1016/j.mser.2020.100579

Louwen, A., Van Sark, W., Schropp, R., & Faaij, A. (2016). A cost roadmap for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 147, 295-314. https://doi.org/10.1016/j.solmat.2015. 12.026

Ogbomo, O. O., Amalu, E. H., Ekere, N. N., & Olagbegi, P. O. (2017). A review of photovoltaic module technologies for increased performance in tropical climate. Renewable and Sustainable Energy Reviews, 75, 1225-1238. https://doi.org/10.1016/j.rser.2016.11.109

Oliveira, A. T. E. de, Sobreira, A. A., Costa, H. F., Ferreira, J. dos S., & Perez, C. A. S. (2022). A energia solar fotovoltaica: transformação, evolução, aspectos ambientais e abordagens na sala de aula. Research, Society and Development, 11(9), e25811932533. https://doi.org/10.33448/rsd-v11i9.32533

Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424. https://doi.org/10.1126/science.aad4424

Sharma, K., Sharma, V., & Sharma, S. S. (2018). Dye-sensitized solar cells: fundamentals and current status. Nanoscale research letters, 13(1), 1-46. https://nanoscalereslett.springeropen.com/ articles/10.1186/s11671-018-2760-6

Teixeira, M. A. C. (2019). Perspectivas do potencial estratégico de novos materiais alternativos ao silício para a produção de células solares fotovoltaicas. 121 f. Dissertação (Programa de Mestrado em Cidades Inteligentes e Sustentáveis) - Universidade Nove de Julho, São Paulo. http://bibliotecatede.uninove.br/handle/tede/2149

Teixeira, M. A. C., Ramos, H. R., & Aguiar, A. O. (2021) Perspectivas de Novos Materiais Alternativos ao Silício para a produção de Células Solares Fotovoltaicas: Uma Revisão Sistemática da Literatura. Revista Nacional de Gerenciamento de Cidades, 9(71) 48 – 62, https://publicacoes. amigosdanatureza.org.br/index.php/gerenciamento_de_cidades/article/view/2953/2777

Vieira, A. C. F. (2021). Energias renováveis e sua eficiência na nova economia energética no Brasil. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 8(18), 211-223. https://doi.org/10.21438/rbgas(2021)081813

Yamaguchi, M., Dimroth, F., Geisz, J. F., & Ekins-Daukes, N. J. (2021). Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics, 129(24), 240901. https://aip.scitation.org/doi/full/10.1063/5.0048653

Published

23/12/2022

How to Cite

LIMA, G. A. M. de .; SOUZA, V. O. .; LOPES, R. S. . Emerging technologies for photovoltaic solar cell production: a review. Research, Society and Development, [S. l.], v. 11, n. 17, p. e139111736068, 2022. DOI: 10.33448/rsd-v11i17.36068. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36068. Acesso em: 26 apr. 2024.

Issue

Section

Engineerings