Machine Learning applied to home care for predicting passing away conditions
DOI:
https://doi.org/10.33448/rsd-v11i14.36078Keywords:
Home care; Healthcare management; Machine learning; Data science; Artificial intelligence.Abstract
In home care processes, where multidisciplinary health teams take care of their patients at home, there are several challenges for resource management and remote monitoring, where, sometimes, resources are not used in main priority situations. The advent of technology, the availability of data in management systems and the new decision-making support tools bring enormous possibilities, financial return and greater comfort for patients and families. This work aims to present the application of machine learning, using the CRISP-DM methodology, to identify patients with a greater chance of hospitalization or to pass away at home.
References
Chen, P. H. C., Liu, Y., & Peng, L. (2019) How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414. https://doi.org/10.1038/s41563-019-0345-0,
IBM (2022) Introduction to CRISP-DM. <https://www.ibm.com/docs/en/spss-modeler/18.2.0?topic=guide-introduction-crisp-dm>
Panesar, A. (2019) Machine learning and AI for healthcare. Coventry, UK: Apress, 2019.
Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. The Knowledge Engineering Review, 25(2), 137-166.
Rehem, T. C. M. S. B., & Trad, L. A. B. (2005). Assistência domiciliar em saúde: subsídios para um projeto de atenção básica brasileira. Ciência & Saúde Coletiva, 10, 231-242.REHEM & TRAD, 2005.
Mendes Júnior, W. V. (2000). Assistência domiciliar: uma modalidade de assistência para o Brasil? Dissertação de Mestrado, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brasil.
Ramallo, V. J. G., & Tamayo, M. I. P. (1998). Historia de la hospitalización a domicilio, pp. 13-22. In MDD Glez (coord.). Hospitalización a domicilio. Hoechst Marion Roussel, Espanha.
Google (2022) Machine Learning Crash Course. < https://developers.google.com/machine-learning/crash-course/>
Pedregosa. et al.,(2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Journal of Machine Learning Research, 12, pp. 2825-2830.
Minsky, M., & Papert, S. (1969). Perceptrons. M.I.T. Press. EUA.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. EUA.
Niaksu, O. (2015). CRISP Data Mining Methodology Extension for Medical Domain. Baltic J. Modern Computing. 3. 92-109.
Tavares, L. D., Manoel, A., Donato, T. H. R., Cesena, F., Minanni, C. A., Kashiwagi, N. M., & Szlejf, C. (2022). Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Research and Clinical Practice, 191, 110047.
Malekloo, A., Ozer, E., AlHamaydeh, M., & Girolami, M. (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Structural Health Monitoring. 21(4):1906-1955.
McCoy, L. G., Brenna, C. T., Chen, S. S., Vold, K., & Das, S. (2022). Believing in black boxes: Machine learning for healthcare does not need explainability to be evidence-based. Journal of clinical epidemiology, 142, 252-257.
Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine learning in healthcare: Operational and financial impact. In Innovative Technology at the Interface of Finance and Operations (pp. 153-174). Springer, Cham.
Rubinger, L., Gazendam, A., Ekhtiari, S., & Bhandari, M. (2022). Machine learning and artificial intelligence in research and healthcare. Injury. ISSN 0020-1383
Silva, D. H. C., Alves, V. K., & Savio, E. (2022). Redes neurais artificiais aplicadas à moagem de minério de ferro combinadas a modelos empíricos. Research, Society and Development, 11(13), e84111332329-e84111332329.
London, A. J. (2019). Artificial intelligence and black‐box medical decisions: accuracy versus explainability. Hastings Center Report, 49(1), 15-21.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Daniel Henrique Cordeiro Silva; Elisa Maria do Nascimento Timo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.