Machine Learning applied to home care for predicting passing away conditions




Home care; Healthcare management; Machine learning; Data science; Artificial intelligence.


In home care processes, where multidisciplinary health teams take care of their patients at home, there are several challenges for resource management and remote monitoring, where, sometimes, resources are not used in main priority situations. The advent of technology, the availability of data in management systems and the new decision-making support tools bring enormous possibilities, financial return and greater comfort for patients and families. This work aims to present the application of machine learning, using the CRISP-DM methodology, to identify patients with a greater chance of hospitalization or to pass away at home.


Chen, P. H. C., Liu, Y., & Peng, L. (2019) How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414.,

IBM (2022) Introduction to CRISP-DM. <>

Panesar, A. (2019) Machine learning and AI for healthcare. Coventry, UK: Apress, 2019.

Mariscal, G., Marban, O., & Fernandez, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. The Knowledge Engineering Review, 25(2), 137-166.

Rehem, T. C. M. S. B., & Trad, L. A. B. (2005). Assistência domiciliar em saúde: subsídios para um projeto de atenção básica brasileira. Ciência & Saúde Coletiva, 10, 231-242.REHEM & TRAD, 2005.

Mendes Júnior, W. V. (2000). Assistência domiciliar: uma modalidade de assistência para o Brasil? Dissertação de Mestrado, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brasil.

Ramallo, V. J. G., & Tamayo, M. I. P. (1998). Historia de la hospitalización a domicilio, pp. 13-22. In MDD Glez (coord.). Hospitalización a domicilio. Hoechst Marion Roussel, Espanha.

Google (2022) Machine Learning Crash Course. <>

Pedregosa. et al.,(2011). Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Journal of Machine Learning Research, 12, pp. 2825-2830.

Minsky, M., & Papert, S. (1969). Perceptrons. M.I.T. Press. EUA.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. EUA.

Niaksu, O. (2015). CRISP Data Mining Methodology Extension for Medical Domain. Baltic J. Modern Computing. 3. 92-109.

Tavares, L. D., Manoel, A., Donato, T. H. R., Cesena, F., Minanni, C. A., Kashiwagi, N. M., & Szlejf, C. (2022). Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Research and Clinical Practice, 191, 110047.

Malekloo, A., Ozer, E., AlHamaydeh, M., & Girolami, M. (2022) Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Structural Health Monitoring. 21(4):1906-1955.

McCoy, L. G., Brenna, C. T., Chen, S. S., Vold, K., & Das, S. (2022). Believing in black boxes: Machine learning for healthcare does not need explainability to be evidence-based. Journal of clinical epidemiology, 142, 252-257.

Anderson, D., Bjarnadottir, M. V., & Nenova, Z. (2022). Machine learning in healthcare: Operational and financial impact. In Innovative Technology at the Interface of Finance and Operations (pp. 153-174). Springer, Cham.

Rubinger, L., Gazendam, A., Ekhtiari, S., & Bhandari, M. (2022). Machine learning and artificial intelligence in research and healthcare. Injury. ISSN 0020-1383

Silva, D. H. C., Alves, V. K., & Savio, E. (2022). Redes neurais artificiais aplicadas à moagem de minério de ferro combinadas a modelos empíricos. Research, Society and Development, 11(13), e84111332329-e84111332329.

London, A. J. (2019). Artificial intelligence and black‐box medical decisions: accuracy versus explainability. Hastings Center Report, 49(1), 15-21.



How to Cite

SILVA, D. H. C. .; TIMO, E. M. do N. Machine Learning applied to home care for predicting passing away conditions. Research, Society and Development, [S. l.], v. 11, n. 14, p. e230111436078, 2022. DOI: 10.33448/rsd-v11i14.36078. Disponível em: Acesso em: 26 nov. 2022.



Health Sciences