Relation of TGF-β1 gene with the prognosis of patients with Covid-19
DOI:
https://doi.org/10.33448/rsd-v11i15.36658Keywords:
Covid-19; Cytokines; Genetic polymorphism; SARS-CoV-2; TGF-β1.Abstract
This study aimed to investigate the role of the TGF-β1 gene in SARS-CoV-2 infection. A total of 178 individuals diagnosed with Covid-19 participated and, they were divided in two groups related to the outcome (discharge or death). Genotyping of rs1800468 and rs1800469 polymorphisms of TGF-β1 gene was performed in 178 samples, using the allelic discrimination technique and, gene expression analysis was performed in 93 samples by Real Time PCR. There was no association between the genotypic frequencies of TGF-β1 gene polymorphisms analyzed with the prognosis of patients with Covid-19. There was no significant difference between gene expression and the clinical data evaluated. A statistically significant difference was observed in the expression of the TGF-β1 gene between the CT and TT genotypes of the rs1800469 polymorphism, with lower gene expression in the presence of the TT genotype. Regarding the rs1800468 polymorphism, no statistically significant difference was observed in the expression of the TGF-β1 gene in relation to the analyzed genotypes. The present study concluded that the rs1800468 and rs1800469 polymorphisms of the TGF-β1 gene are not associated with the prognosis of patients with Covid-19 and which the TT genotype of the rs1800469 polymorphism reduces the expression of TGF-β1.
References
Broekelmann, T. J., Limper, A. H., Colby, T. V., & McDonald, J. A. (1991). Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 88(15), 6642–6646.
Casanova, J. L., Su, H. C., & COVID Human Genetic Effort (2020). A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 181(6), 1194–1199.
Chen, G., Hu, C., Lai, P., Song, Y., Xiu, M., Zhang, H., Zhang, Y., & Huang, P. (2019). Association between TGF-β1 rs1982073/rs1800469 polymorphism and lung cancer susceptibility: An updated meta-analysis involving 7698 cases and controls. Medicine, 98(47).
Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews, 54, 62–75.
de Almeida-Pititto, B., Dualib, P. M., Zajdenverg, L., Dantas, J. R., de Souza, F. D., Rodacki, M., Bertoluci, M. C., & Brazilian Diabetes Society Study Group (SBD) (2020). Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetology & metabolic syndrome, 12, 75.
Di Maria, E., Latini, A., Borgiani, P., & Novelli, G. (2020). Genetic variants of the human host influencing the coronavirus-associated phenotypes (SARS, MERS and COVID-19): rapid systematic review and field synopsis. Human genomics, 14(1), 30.
Ferreira-Gomes, M., Kruglov, A., Durek, P., Heinrich, F., Tizian, C., Heinz, G. A., … Mashreghi, M. F. (2021). SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nature communications, 12(1), 1961.
Ghazavi, A., Ganji, A., Keshavarzian, N., Rabiemajd, S., & Mosayebi, G. (2021). Cytokine profile and disease severity in patients with COVID-19. Cytokine, 137, 155323.
Gómez, J., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado-Rodríguez, L., Lopez-Alonso, I., Hermida, T., Enriquez, A. I., Herrero, P., Melón, S., Alvarez-Argüelles, M. E., Boga, J. A., Rojo-Alba, S., Cuesta-Llavona, E., Alvarez, V., Lorca, R., & Coto, E. (2020). Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene, 762, 145102.
Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., Carter, N. D., & Spector, T. D. (1999). Genetic control of the circulating concentration of transforming growth factor type beta1. Human molecular genetics, 8(1), 93–97.
He, B., Xu, C., Yang, B., Landtblom, A. M., Fredrikson, S., & Hillert, J. (1998). Linkage and association analysis of genes encoding cytokines and myelin proteins in multiple sclerosis. Journal of neuroimmunology, 86(1), 13–19.
Juarez, I., Gutierrez, A., Vaquero-Yuste, C., Molanes-López, E. M., López, A., Lasa, I., Gómez, R., & Martin-Villa, J. M. (2021). TGFB1 polymorphisms and TGF-β1 plasma levels identify gastric adenocarcinoma patients with lower survival rate and disseminated disease. Journal of cellular and molecular medicine, 25(2), 774–783.
Karunasagar, Iddya; Karunasagar, Indrani. (2020). Ongoing COVID-19 Global Crisis and Scientific Challenges. Journal of Health and Allied Sciences NU, 10(01), 01–02.
Khadke, S., Ahmed, N., Ahmed, N., Ratts, R., Raju, S., Gallogly, M., de Lima, M., & Sohail, M. R. (2020). Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Virology journal,17(1), 154.
Kim, Y. C., & Jeong, B. H. (2020). Strong Correlation between the Case Fatality Rate of COVID-19 and the rs6598045 Single Nucleotide Polymorphism (SNP) of the Interferon-Induced Transmembrane Protein 3 (IFITM3) Gene at the Population-Level. Genes,12(1), 42.
Li, B., Khanna, A., Sharma, V., Singh, T., Suthanthiran, M., & August, P. (1999). TGF-beta1 DNA polymorphisms, protein levels, and blood pressure. Hypertension (Dallas, Tex. : 1979), 33(1 Pt 2), 271–275.
Loeys, B. L., Schwarze, U., Holm, T., Callewaert, B. L., Thomas, G. H., Pannu, H., De Backer, J. F., Oswald, G. L., Symoens, S., Manouvrier, S., Roberts, A. E., Faravelli, F., Greco, M. A., Pyeritz, R. E., Milewicz, D. M., Coucke, P. J., Cameron, D. E., Braverman, A. C., Byers, P. H., De Paepe, A. M., … Dietz, H. C. (2006). Aneurysm syndromes caused by mutations in the TGF-beta receptor. The New England journal of medicine, 355(8), 788–798.
Luedecking, E. K., DeKosky, S. T., Mehdi, H., Ganguli, M., & Kamboh, M. I. (2000). Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of Alzheimer's disease. Human genetics,106(5), 565–569.
Montalvo Villalba, M. C., Valdés Ramírez, O., Muné Jiménez, M., Arencibia Garcia, A., Martinez Alfonso, J., González Baéz, G., Roque Arrieta, R., Rosell Simón, D., Alvárez Gainza, D., Sierra Vázquez, B., Resik Aguirre, S., & Guzmán Tirado, M. G. (2020). Interferon gamma, TGF-β1 and RANTES expression in upper airway samples from SARS-CoV-2 infected patients. Clinical immunology (Orlando, Fla.), 220, 108576.
Morikawa, M., Derynck, R., & Miyazono, K. (2016). TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor perspectives in biology, 8(5), a021873.
Rai, P., Kumar, B. K., Deekshit, V. K., Karunasagar, I., & Karunasagar, I. (2021). Detection technologies and recent developments in the diagnosis of COVID-19 infection. Applied microbiology and biotechnology,105(2), 441–455.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature protocols, 3(6), 1101–1108.
Shen, W. X., Luo, R. C., Wang, J. Q., & Chen, Z. S. (2021). Features of Cytokine Storm Identified by Distinguishing Clinical Manifestations in COVID-19. Frontiers in public health, 9, 671788.
Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Allen, R., Sidman, C., Proetzel, G., & Calvin, D. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699.
Tian, J., Yuan, X., Xiao, J., Zhong, Q., Yang, C., Liu, B., Cai, Y., Lu, Z., Wang, J., Wang, Y., Liu, S., Cheng, B., Wang, J., Zhang, M., Wang, L., Niu, S., Yao, Z., Deng, X., Zhou, F., Wei, W., … Wang, Z. (2020). Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study.The Lancet. Oncology, 21(7), 893–903.
Wahl, S. M., Wen, J., & Moutsopoulos, N. (2006). TGF-beta: a mobile purveyor of immune privilege. Immunological reviews, 213, 213–227.
Yamada, Y., Miyauchi, A., Takagi, Y., Nakauchi, K., Miki, N., Mizuno, M., & Harada, A. (2000). Association of a polymorphism of the transforming growth factor beta-1 gene with prevalent vertebral fractures in Japanese women. The American journal of medicine, 109(3), 244–247.
Zheng, R., Fu, Z., & Zhao, Z. (2021). Association of Transforming Growth Factor β1 Gene Polymorphisms and Inflammatory Factor Levels with Susceptibility to Sepsis. Genetic testing and molecular biomarkers, 25(3), 187–198.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Christiane Ruffato Carminati; Anna Cecília Dias Maciel Carneiro; Andrezza Cristina Cancian Hortolani da Cunha; Loren Queli Pereira; Fernanda Bernadelli De Vito; Marcos Vinicíus da Silva; Virmondes Rodrigues Júnior; Mariângela Torreglosa Ruiz Cintra; Roseane Lopes da Silva Grecco; Sarah Cristina Sato Vaz Tanaka; Helio Moraes de Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.