Spatial modeling of nitrogen and phosphorus in an agricultural basin in northeastern Brazil
DOI:
https://doi.org/10.33448/rsd-v11i15.37047Keywords:
SWAT; Water production; Water resources; Nutrients.Abstract
Hydrological models can help in predicting the behavior of aquatic systems in watershed, and are able to simulate both hydrological processes and nutrient dynamics. The SWAT model is used in water resource management to estimate the production of water, sediments, and nutrients, as well as to identify diffuse sources of pollution. The objective of this work was to evaluate spatial and temporal variability in the dynamics of the nutrients nitrogen and phosphorus derived from agricultural activities, at the sub-basin level, in the watershed of the Poxim-Açu River. The model was subjected to tests of sensitivity, calibration, and validation in terms of the discharge and the behavior of the nutrients. Statistical analysis showed that the performance of the model was satisfactory. It was found that more than 40% of the areas of the main subbasins that produced sediments and nutrients was occupied by pasture, and that the predominant soil types were Red-Yellow Argisols and Gleysols. These subbasins corresponded to 30% of the hydrographic basin studied and produced 65% of the sediments, 84% of the total nitrogen, 93% of the phosphate, and 86% of the total phosphorus.
References
Abu-Zreig, M. & Hani, L. (2021). Assessment of the SWAT model in simulating wa-tersheds in arid regions: Case study of the Yarmouk River Basin (Jordan). Open Geos-ciences, 13(1): 377-389. doi:10.1515/geo-2020-0238
Aguiar Netto, A. O., Garcia, C. A. B., Hora Alves, J. D. P., Ferreira, R. A. & Silva, M. G. (2013). Physical and chemical characteristics of water from the hydrographic basin of the Poxim River, Sergipe State, Brazil. Environmental Modeling and Assessment. 185(5):4417-4426. doi: 10.1007/s10661-012-2880-x
Almeida, C. A. P. de .; Aguiar Netto, A. de O. (2022). Management of the Poxim-Açu River: a Swat model for evaluating irrigation scenarios. Research, Society and Development. v. 11, n. 12, p. e302111234732. DOI: 10.33448/rsd-v11i12.34732
American Public Health Association. (2005). Standard Methods for the examination of water and wasterwater. Washington, APHA. 1368 p
Andrade, C. W. L., Montenegro, S. M. G. L., Lima, J. R. S., Montenegro, A. A. A. & Srinivasan, R. (2017). Análise de sensibilidade de parâmetros do modelo SWAT em uma sub-bacia da Região Nordeste, Brasil. Revista Brasileira de Geografia Física. 10(2): 440-453. doi:10.5935/1984-2295.20170027
Arnold, J. G. & Fohrer, N. (2005). SWAT 2000: Current capabilities and research opportunities in applied watershed modeling. Hydrological Processes. 19(3): 563-572 doi: 10.1002/hyp.5611
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Van Harmel, R. D., Van Griensven, A., Van Liew, M. W., Kannan, N. & Jha, M. K. (2012). SWAT:model use, calibration, and validation Trans. ASABE. 55(4):1491-1508
Boskidis, I., Gikas, G. D., Sylaios, G. K. & Tsihrintzis, V. A. (2012). Hydrologic and water quality modeling of lower Nestos river basin. Water Resource Management. 26(10):3023-3051. doi: 10.1007/s11269-012-0064-7
Bossa, A. Y., Diekkrüger, B., Giertz, S., Steup, G., Sintondji, L. O., Agbossou, E. K. & Hiepe, C. (2012). Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management. 115:20-37 doi:10.1016/j.agwat.2012.08.011
Chen, J., Du, C., Nie, T., Han, X. & Tang, S. (2022). Study of Non-Point Pollution in the Ashe River Basin Based on SWAT Model with Different Land Use. Water. 14, 2177. doi: 10.3390/w14142177
Durães, M. F., Mello, C. R. & Naghettini, M. (2011). Applicability of the swat model for hydrologic simulation in Paraopeba River basin, MG”. CERNE 17. (4):481-488
Galvan, L., Olias, M., Fernandez de Villaran, R., Domingo Santos, J. M., Nieto, J. M., Sarmiento, A. M. & Canovas, C. R. (2009). Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of transported pollutant load. Journal of Hydrology. 377(3,4):445-454 doi:10.1016/j.scitotenv.2012.07.033
Ghebremichael, L. T., Veith, T. L. & Watzin, M. C. (2010). Determination of Critical Source Areas for Phosphorus Loss: Lake Champlain Basin, Vermont. Vermont. Transactions of the ASABE. 53(5):1595-1604. doi:10.13031/2013.34898
Green, C. H. & Van Griensven, A. (2018). Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environmental Modelling & Software. 23(4):422-434 doi:10.1016/j.envsoft.2007.06.002
Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal Hydrologic Engineering. 4(2):135-143.http://dx.doi.org/10.1061/(ASCE)1084-0699
Hesse, C., Krysanova. V. & Voß, A. (2012). Implementing in-stream nutrient processes in large-scale landscape modeling for the impact assessment on water quality. Environmental Modeling and Assessment. 17(6): 589-611 doi: 10.1007/s10666-012-9320-8
Leite, I. V.; Almeida, A. Q. de; Loureiro, D. C.; Souza, R. M. S.; Gonzaga, M. I. S.; Pereira, D. dos R.; Santos, A. de A. (2020). Evaluation of interpolation methods of bathymetric data at the Poxim-Açu river dam – SE. Research, Society and Development. v. 9, n. 9, p. e690997755. DOI: 10.33448/rsd-v9i9.7755
Lelis, T. A. & Calijuri, M. L. (2010). Modelagem hidrossedimentológica de Bacias hidrográficas na região sudeste do Brasil, utilizando o SWAT. Revista Ambiente e Água. 5(2):158-174. doi: 104136/ambi-agua.45
Li, M. & Guo, Q. (2020). SWAT Model Simulation of Non-Point Source Pollution in the Miyun Reservoir WatershedIOP Conf. Series: Earth and Environmental Science. 428, 012075. doi:10.1088/1755-1315/428/1/012075
Lima, B. P., Mamede, G. L. & Lima Neto, I. E. (2018). Monitoramento e modelagem da qualidade de água em uma bacia hidrográfica semiárida. Engenharia Sanitária e Ambiental. jan/fev23(1):125-135. doi:10.1590/S1413-41522018167115
Liu, Y., Li, H., Cu, G. & Cao, Y. (2020). Water quality attribution and simulation of non-point source pollution load flux in the Hulan. River basin Scientific Reports. 10:3012. doi:10.1038/s41598-020-59980-7
Machado, R. E., Vettorazzi, C. A. & Xavier, A. C. (2003). Simulação de cenário alternativo de uso da terra em uma microbacia utilizando técnicas de modelagem e geoprocessamento, SP. Revista Brasileira de Ciências do Solo. 27:727-733. doi:10.1590/S0100-06832003000400017
Marques, K. R.; Fidelis, R. R.; Cavazzini, P. H.; Oliveira, L. B. de .; Silva, R. R. da; Burin, L. X. (2022). Phosphate fertilization and bioactivator influences on fractions of organic matter and soil microbial biomass. Research, Society and Development. v. 11, n. 9, p. e52211932086. DOI: 10.33448/rsd-v11i9.32086
Miranda, E. E. (2005). Brasil em Relevo. Campinas: Embrapa Monitoramento por Satélite. <http://www.relevobr.cnpm.embrapa.br>. Access em: 30 March 2022
Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Willians Grassland J. R. (2009). Soil and Water Research Laboratory. Soil and Water Assessment Tool Theoretical Documentation Version. Agricultural Research Service Blackland Research Center-Texas Agrilife Research. Texas A&M University System, 2011
Rissman, A. R. & Carpenter, S. R. (2015). Progress on Nonpoint Pollution: Barriers & Opportunities. Daedalus. 144, 35–47, doi:10.1162/DAED_a_00340
Rocha, E. O., Calijuri, M. L., Santiago, A. F., Assis, L. C. & Alves, L. (2012). The Contribution of Conservation Practices in Reducing Runoff, Soil Loss, and Transport of Nutrients at the Watershed Level. Water Resources Management. 26. doi:10.1007/s11269-012-0106-1
Romanowicz, A. A., Vanclooster. M., Rounsevell, M. & La Junesse, I. (2005). Sensitivity of the SWAT model to the soil and land use data parametrisation: a case study in the Thyle catchment, Belgium. Ecological Modelling. 187(1):27-39. doi:10.1002/hyp.7793
Sales, J. M. de J.; Aguiar Netto, A. de O.; Carvalho, C. M. de. (2022). Hydrological modeling of hydrographic basin in the northeast semiarid region of Brazil. Research, Society and Development. v. 11, n. 3, p. e48711326735. DOI: 10.33448/rsd-v11i3.26735
Santhi, C., Arnold, J., Williams, J. R., Dugas, W. A., Srinivasan, R. & Hauck, L. M. (2001). Validation of the swat model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association. 37(5), 1169-1188
Sergipe. (2015). Secretaria de Estado do Planejamento e da Ciência e Tecnologia – Superintendência de Recursos Hídricos. Sergipe: Atlas digital sobre recursos hídricos. CD-ROM
Silva, F. H. B. B., Silva, M. S. L & Cavalcanti, A. C. (2005). Descrição das principais classes de solos. Recife. Embrapa. Centro Nacional de Pesquisa de Solos. Disponível em <http://ainfo.cnptia.embrapa.br/digital/bitstream/CPATSA/34393/1/OPB1113.pdf> Accessed 19 May 2021
Silva, M. G., do Vasco, A. N., Aguiar Netto, A. O., Garcia, C. A. B. & Amarante, S. F. (2014). A qualidade da água na bacia hidrográfica do rio Poxim. In: Vasco, A. N.; Wandereley, L. L.; Silva. M. G. (Org.). Rio Poxim, o rural, o urbano e o ambiental na bacia hidrográfica. Aracaju: EDIFS. 206-228
Singh, J., Knapp, H., Arnold, J. & Misganaw, D. (2005). Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. JAWRA Journal of the American Water Resources Association. 41(2):343-360. doi:10.1111/j.1752-1688.2005.tb03740.x
Souza, A. O.; Carvalho, C. M. de; Gomes Filho, R. R.; Garcia, C. A. B.; Cerqueira, E. S. A.; Valnir Júnior, M.; Carvalho, L. L. S. de; Saraiva, K. R.; Silva, A. F. da. (2021). Temporal and spatial analysis of the waters of the irrigated perimeter Cotinguiba/Pindoba in the hydrographic region of the lower São Francisco Sergipano. Research, Society and Development, v. 10, n. 2, p. e39210212403. DOI: 10.33448/rsd-v10i2.12403
Uzeika, T., Merten, G., Minella, J. P. G. & Moro, M. (2012). Use of the swat model for hydro-sedimentologic simulation in a small rural watershed. Revista Brasileira de Ciência do Solo. 36. 557-565. doi:10.1590/S0100-06832012000200025
Van Liew, M. W., Veith, T. L., Bosch, D. D. & Arnold, J. G. (2007). Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watershed. Journal of Hydrologic Engineering. doi: 10.1061/ASCE1084-0699200712:2173
Vasco, A. N., Britto, F. B., Pereira, A. P. S., Méllo Júnior, A. V., Garcia, C. A. B. & Nogueira, L. C. (2011). Avaliação espacial e temporal da qualidade da água na sub-bacia do rio Poxim, Sergipe, Brasil. Revista Ambiente e Água. 6(1):118-130 doi:10.4136/ambi-agua.178
Vasco, G.; Silva, F. S.; Paz, D. H.; Farias, M. M. E. .; Barbosa , I. M. B. R. (2022). Effect of land use/cover maps resolution on the Una/PE river basin hydrological response using SWAT model. Research, Society and Development. v. 11, n. 13, p. e472111334352. DOI: 10.33448/rsd-v11i13.34352
Volk, M. & Bosch, D. (2017). SWAT: Agricultural water and nonpoint source pollution management at a watershed scale – Part II. Agricultural Water Management. jan(180):191-193. doi:10.1016/j.agwat.2016.06.013
White, K. L. & Chaubey, I. (2005). Sensitivity Analysis, Calibration, and Validations for a Multisite and Multivariable SWAT Model. JAWRA Journal of the American Water Resources Association. 41(5):1077-1089. doi:10.1111/j.1752-1688.2005.tb03786.x
Zhenyao, S., Jiali, Q., Qian, H. & Lei, C. (2014). Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Science of The Total Environment. (493): 138-146, doi: 10.1016/j.scitotenv.2014.05.109
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marinoé Gonzaga da Silva; Anderson Nascimento do Vasco; Cleide Cruz Soares; Ramiro Joaquim de Jesus Neves; Carlos Alexandre Borges Garcia; Antenor de Oliveira Aguiar Netto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.