Supercapacitors: Review
DOI:
https://doi.org/10.33448/rsd-v11i15.37069Keywords:
Energy; Supercapacitor; Nanotechnology.Abstract
It is known that in an energy conversion and storage device, having high power density and remarkable durability are characteristics of great relevance. The supercapacitor (SC) has these two characteristics, however, it is still necessary to face challenges during the fabrication and management of the SC. Therefore, the study of new materials to fill these gaps in this device is necessary. Thus, the objective of this work was to discuss the working principles of different materials – such as metallic oxides, intrinsically conductive polymers and carbon-based materials – with the potential to produce more efficient supercapacitors. These will be addressed from both a research and an application point of view, along with their properties, specific area and capacitance. In addition, industrial applications described in the literature are also discussed in order to qualitatively and quantitatively assess recent research progress and encourage innovations in SC control and management.
References
Adetayo, A., & Runsewe, D. (2019). Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open Journal of Composite Materials, 9, 207-229.
Al-Refai, H. H., Ganash, A. A., & Hussein, M. A. (2021). Polythiophene and its derivatives – Based nanocomposites in electrochemical sensing: A mini review. Materials Today Communications, 26, 101935(1-11).
Alves, M. R., Rodrigues, V. D., Soares, W. D., & Junior, R. S. M. (2022). Revisão da literatura e suas diferentes características. Editora Científica Digitas, 4, 46-53, 10.37885/220509058.
Annamalai, K. P., Zheng, X., Gao, J., Chen, T., & Tao, Y. (2018). Nanoporous Ru-Mn oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors. Carbon, 144, 185-192.
Arduini, F., Cinti, S., Mazzarazzhio, V., Scognamiglio, V., Amine, A., & Moscone, D. (2020). Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosensors & Bioelectronics, 20, 1-52.
Ashassi-Sorhabi, H., & Kazempour, A. (2020). Incorporation of organic/inorganic materials into polypyrrole matrix to reinforce its anticorrosive properties for the protection of steel alloys: A review. Journal of Molecular Liquids, 309, 113085(1-14).
Askari, M. B., Salarizadeh, P., Seifi, M., Zadeh, M. H. R., & Bartolomeo, A. D. (2021). ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. Journal of Alloys and Compounds, 860, 158497.
Aziz, S. B., Woo, T. J., Kadir, M. F. Z., & Ahmed, H. M. (2018). A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 3, 1-17.
Aziz, S. B., Hamsan, M. H., Abdullah, R. M., Abdulwahid, R. T., Brza, M. A., Marif, A. S., & Kadir, M. F. Z. (2020). Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes. Ionics, 26, 1829-1840.
Bhadra, J., Alkareem, A., & Al-Thani, N. (2020). A review of advances in the preparation and application of polyaniline based thermoset blends and composites. Journal of Polymer Research, 27(122), 1-20
Cai, W., Yao, Y. X., Zhu, G. L., Yan, C., Jiang, L. L., He, C., Huang, J. Q., & Zhang, Q. (2019). Areview on energy chemistry of fast-charging anodes. Chemical Society Reviews, 49(12), 3806-3833.
Chen, C. R., Qin, H., Cong, H. P., & Yu, S. H. (2019). A highly stretchable and real-time healable supercapacitor. Advanced Materials,31, 1900573-1900583.
Cherusseri, J., Pandey, D., Kumar, K. S., Thomas, J., & Zhai, L. (2020). Flexible Supercapacitor Electrodes using Metal-Organic Frameworks. Nanoscale, doi: 10.1039/D0NR03549A.
Cossutta, M., Vretenar, V., Centeno, T. A., Kotrusz, P., McKechnie, J., & Pickering, S. J. (2020). A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. Journal of Cleaner Production, 242, 118468(1-10).
Darkwa, K. M., Zequine, C., Kahol, P. K., & Gupta, R. K. (2019). Supercapacitor energy storage device using biowastes: a sustainable approach to green energy. Sustainability, 11(414), 1-22.
Das, M., & Mandal, R. (2018). A comparative performance analytics of direct, with battery, supercapacitor, and baterry-supercapacitor enabled photovoltaic water pumping systems using centrifugal pump.Solar Energy, 171, 302-309.
Down, M. P., Rowley-Neale, S. J., Smith, G. C., & Banks, C. E. (2018). Fasbrication of graphene oxide supercapacitor devices. ACS Applied Energy Materials, 1, 707-714.
Eskandaria, E., Kosarib, M., Farahania, M. H. D. A., Khiavic, N. D., Saeedikhanid, M., Katale, R., & Zarinejadf, M. (2020). A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Separation and Purification Technology, 231(115901), 1-27.
Fan, L., Lin, K., Wang, J., Ma, R., & Lu, B. (2018). A nonaqueous potassium-based battery-supercapacitor hybrid device. Advanced Materials, 30(1800804), 1-7.
Farjadian, F., Abbaspour, S., Sadatlu, M. A. A., Mirkiani, S., Ghasemi, A., Hoiseini-Ghahfarokhi, M., Mozaffari, N., Karimi, M., & Hamblin, M. R. (2020). Recent Developments in Graphene Oxide: Properties, Synthesis, and Modifications: A review. Chemistry Select, 5, 10200-10219.
Gu, H., Zhang, H., Gao, C., Liang, C., Gu, J., & Guo, Z. (2018). New Functions of Polyaniline. ES Materials & Manufacturing, 1, 3-12.
Hamsan, M. H., Aziz, S. B., Kadir, M. F. Z., Brza, M. A., & Karim, W. O. (2020). The study of EDLC device fabricated from plasticized magnesium ion conducting chitosan based polymer electrolyte. Polymer Testing, 90(106714), 1-10.
Han, R., Liu, F., Wang, X., Huang, M., Li, W., Yamauchi, Y., Sun, X., & Huang, Z. (2020). Functionalised Hexagonal Boron Nitride for Energy Conversion and Storage. Journal of Materials Chemistry A, 8, 14384-14399.
Hong, X., Liu, Y., Li, Y., Wang, X., Fu, J., & Wang, X. (2020). Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithum-Sulfur Batteries. Polymers, 12(331), 1-27.
Hu, Y. S., & Lu, Y. (2020). The mystery of electrolyte cncentration: from superhigh to ultralow. ACS Energy Letters, 5, 3633-3636.
Huang, Z., Li, L., Wang, Y., Zhang, C., & Liu, T. (2018). Polyaniline/graphene nancomposites towards high-performance supercapacitors: A review. Composites Communications, 8, 83-92.
Ikram, R., Jan, B. M., & Ahmad, W. (2020). An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Tecgnology, 9(5), 11587-11610.
IUPAC – International Union of Pure and Applied Chemistry, Basic Definitions of Terms Relating to Polymers, Butter Worths: London, 1974.
Jagadale, A., Zhou, X., Xiong, R., Dubal, D. P., Xu, J., & Yang, S. (2019) Lithium ion capacitors (LICs): Development of materials. Energy Storage Materials, 19, 314-329.
Jangid, N. K., Jadoun, S., & Kaur, N. (2020). A review on high-throughput synthesis, deposition of thin fils and properties of Polyaniline. European Polymer Journal, 125, 109485.
Jha, R. K., Wan, M., Jacob, C., & Guha, P. K. (2018). Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites. New Journal of Chemistry, 42, 735-745.
Jin, X., Song, L., Yang, H., Dai, C., Xiao, Y., Zhang, X., Han, Y., Bai, C., Lu, B., Liu, Q., Zhao, Y., Zhang, J., Zhang, Z., & Qu, L. (2021). Stretchable supercapacitor at -30°C. Energy & Environmental Science, 14(5), 3075-3085.
Karade, S. S., & Sankapal, B. R. (2018). Materials Mutualism through EDLC-Behaved MWCNTs with pseudocapacitive MoTe2 nanopebbles: enhanced supercapacitive performance. ACS Sustainable Chemistry & Engineering, 6, 15072-15082.
Karaoglan, N., & Bindal, C. (2018). Synthesis and optical characterization of benzene sulfonic acid doped. Engineering Science and Technology and International Journal, 21(6), 1152-1158.
Kavitha C. (2020). A review on reduced Graphene oxide hybrid nano composites and their prominent applications. Materials Today: Proceedings, 43(3), 811-816.
Kazemi, F., Naghib, S. M., Zare, Y., & Rhee, K. Y. (2020) Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A review. Polymer Reviews, 61(3), 553-597.
Ketenoglu, D., Spiekermann, G., Harder, M., Oz, E., Koz, C., Yagci, M. C., Yilmaz, E., Yin, Z., Sahle, C. J., Detlefsk, B., & Yavas¸ H. (2018). X-ray Raman spectroscopy of lithium-ion baterry electrolyte solutions in a flow cell. Journal of Synchrotron Radiation, 25, 1-6.
Kouchachvili, L., Yaici, W., & Entchev, E. (2018). Hybrid battery/supercapacitor energy storage system for the electric vehicles. Journal of Power Sources, 374, 237-248.
Kumar, R., Youssry, S., Ya, K. Z., Tan, W. K., Kawamura, G., & Matsuda, A. (2019). Microwave-assisted synthesis of Mn3O4-Fe2O3/ Fe3O4@rGO ternary hybrids and electrochemical performance for supercapacitor electrode. Diamond and Related Materials, 101, 107622.
Kumar, R., Youssry, S. M., Soe, H. M., Abdel-Galeil, M. M., Kawamura, G., & Matsuda, A. (2020). Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. Journal of Energy Storage, 30, 101539.
Kumar, S., Saeed, G., Zhu, L., Hui, K. N., Kim, N. H., & Lee, J. H. (2021). 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high ebergy density supercapacitor: A review. Chemical Engineering Journal, 403, 126352.
Lee, S. L., & Chang, C. J. (2019). Recent Developments about Conductive Polymer Based Composite Photocatalysts. Polymers, 11(206), 1-21.
Lee, C., Kim, S. K., Choi, J. H., Chang, H., & Jang, H. D. (2017). Electrochemical performances of iron-cobalt oxides nanoparticles loaded crumpled graphene for supercapacitor. Journal of Allloys and Compouds, 735, 2030-2037.
Lee, G., Kim, J. W., Park, H., Lee, J. Y., Lee, H., Song, C., Jin, S. W., Keum, K., Lee, C. H., & Ha, J. S. (2019). Skin-Like, Dynamically Stretchable, Planer Supercapacitors with Buckled Carbon Nanotube/Mn-Mo Mixed Oxide Electrodes and Air-Stable Organic Electrolyte. ACS Nano, 13(1), 855-866.
Leonard. D. P., Wei, Z., Chen, G., Du, F., & Ji, X. (2018). Water-in-Salt electrolyte for potassium-ion batteries. ACS Energy Letters, 3, 373-374.
Li, X., & Wei, B. (2013). Supercapacitors based on nanostructured carbon. Nano Energy, 2, 159-173.
Li, B., Zheng, J., Zhang, H., Jin, L., Yang, D., Lv, H., Shen, C., Shellikeri, A., Zheng, Y., Gong, R., Zheng, J. P., & Zhang, C. (2018). Electrode materials, electrolytes and challenges in nonaqueous lithium-ion capacitors. Advanced Matererials, 1705670, 1-19.
Li, Y., Lu, Y., Adelheim, O., Titirici, M. M., & Hu, Y. S. (2019). Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 48, 4655-4687.
Li, Z., Lin, J., Li, B., Yu, C., Wang, H., & Li, Q. (2021). Construction pf heteroatom-doped and three-domensional graphene materials for the applications in supercapacitors: A review. Journal of Energy Storage, 44, 103437.
Liao, G., Li, Q., & Xu, Z. (2019). The chemical modification of polyaniline with enhanced properties: a review. Progress in Organic Coatings, 126, 35-43.
Liu, Y., Xiang, C., Chu, H., Qiu, S., McLeod, J., She, Z., Xu, F., Sun, L., & Zou, Y. (2019). Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. Materials Science & Technology, 37, 135-142.
Liu, S., Wei, L., & Wang, H. (2020). Review on reliability of supercapacitors in energy storage applications. Applied Energy, 278, 115436.
Liu, W., Zhang, W., Zuo, S., Yao, C., & Li, X. (2021). MoS2-modified nitrogen-doped carbon nanotubes and their applications in supercapacitors. Journal of Materials Science: Materials in Electronics, 32, 27184-27197.
Lou, Z., Wnag, L., Jiang, K., Wei, Z., & Shen, G. (2020). Reviews of wearable healthcare systems: Materials, devices and system integration. Materials Science & Engineering R, 140, 100523.
Lu, C., & Chen, X. (2020). Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications. Accounts of Chemical Research, 53(8), 1468-1477.
Maksoud, M. I. A., Fahim, R. A., Shalan, A. E., Elkodous, M. A., Olojede, S. O., Osman, A. I., Farrell, C., Al-Muhtaseb, A. H., Awed, A. S., Ashour, A. H., & Rooney, D. W. (2021). Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 19, 375-439.
Mehtab, T., Yasin, G., Arif, M., Shakeel, M., Korai, R. M., Nadeem, M., Muhammad, N., & Lu, X. (2019). Metal-organic frameworks for energy storage devices: Batteries and Supercapacitors. Journal of Energy Storage, 21, 632-646.
Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of. Physical Chemistry C, 122, 194-206.
Mohanty, A., Jaihindh, D. P., Fu, Y. P., Senanayak, S. P., Mende, L. S., & Ramadoss, A. (2021). An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. Journal of Power Sources, 488, 229444.
Mousavi, S. M., Hashemi, S. A., Bahrani, S., Yousefi, K., Behbudi, G., Babapoor, A., Omidifar, N., Lai, C. W., Gholami, A., & Chiang, W. H. (2021). Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. International Journal of Molecular Sciences, 22, 6850-6867.
Muzaffar, A., Ahamed, M. B., Deshmukh, K., & Thirumalai, J. (2019). A review in recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable and Sustainable Energy Reviews, 101, 123-145.
Najib, S., & Erdem, E. (2019). Current progress acieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Advances, 1, 2817-2827.
Namsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. Royal Society of Chemistry Advances, 11, 5659-5697.
Oca, L., Guillet, N., Tessard, R.,, & Iraola, U. (2019). Lithium-ion capacitor safety assessment under electrical abuse tests based on ultrasound characterization and cell opening. Journal of Energy Storage, 23, 29-36.
Pang, A. L., Arsad, A., & Ahmadipour, M. (2020). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers Advanced Technologies, 32, 1428-1454.
Parnell, C. M., Chhetri, B. P., Mitchell, T. B., Watanabe, F., Kannarpady, G., RanguMagar, A. B., Zhou, H., Alghazali, K. M., Biris, A. S., & Ghosh, A. (2019). Simultaneous Electrochemical Deposition of Cobalt Complex and Poly(pyrrole) thin films for supercapacitor electrodes. Scientific Reports, 9, 5650-5663.
Pazhamalai, P., Krishnamoorthy, K., Manoharan, S.,, & Kim, S. J. (2018). High energy symmetric supercapacitor based on mechanically delaminated few-layeres MoS2 sheets in organic electrolyte. Journal of Alloys and Compouds, 771, 803-809.
Peng, J. & Han, Y. (2020). Recent advances in conjugated polythiophene-based rod-rod block copolymers: from morphology control to optoelectronic applications. Giant, 4, 100039.
Pimenta, M. A., Geracitano, L. A., & Fagan, S. B. (2019). History and national intiatives of carbon nanotube and graphene research in Brazil. Brazilian Journal of Physics, doi: 10.1007/s13538-018-0618-0.
Qiu, T., Liang, Z., Guo, W., Tabassum, H., Gao, S., & Zou, R. (2020). Metal-Organic Framework-Based Materials for Eenergy Conversion and Storage. ACS Enegy Letters, 5, 520-532.
Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K. H., Yang, J., Kumar, S., Mehmood, A., & Kwon, E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473.
Reece, R., Lekakou, C., & Smith, P. A. (2018). A structural supercapacitor based on activated carbon fabric and solid electrolyte. Materials Science and Technology, 35, 368-375.
Reece, R., Lekakou, C., & Smith, P. A. (2020). A high-performance structural supercapacitor. ACS Applied Materials & Interfaces, 12(23), 25683-25692.
Saha, S., Samanta, P., Murmu, N. C., & Kuila, T. (2018). Areview on the heterostructure nanomaterials for supercapacitor application. Journal of Energy Storage, 17, 181-202.
Sahin, M. E., Blaabjerg, F., & Sangwongwanich, A. (2020). A review on supercapacitor materials and develipments. Turkish Journal of Materials, 5(2), 10-24.
Salameh, T., Abdelkareem, M. A., Olabi, A. G., Sayed, E. T., Al-Chaderchi, M., & Rezk, H. (2020). Integrated standalone hybrid solar PV, fuel cell and diesel generator power system for battery or supercapacitor storage systems in Khorfakkan, United Arab Emirates. International Journal of Hydrogen Energy, 46(8), 6014-6027.
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber Polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566-581.
Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., Gholaminejad, A., Omidfar, K., & Foruzandeh, M. (2019). Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Microchimica Acta, 186(465), 1-29.
Silva, F. D., Rocha, R. G., Rocha, D. P., Silva, M. N. T., Nossol, E., Muñoz, R. A. A., Semaan, F. S., & Dornellas, R. M. (2020). In situ electrochemical exfoliation of embedded graphite to superficial graphene sheets for electroanalytical purposes. Electrochimica Acta, 20, 1-38.
Stejskal, J., & Trchová, M. (2018). Conducting polypyrrile nanotubes: a review. Chemical. Papers, 10.1007/s11696-018-0394-x.
Sun, G., Yang, H., Zhang, G., Gao, J., Jin, X., Zhao, Y., Jiang, L., & Qu, L. (2018). A capacity recoverable zinc-ion micro-supercapacitor. Energy & Environmental Science, 11, 3367-3374.
Sundriyal, S., Kaur, H., Bhardwaj, S. K., Mishra, S., Kim, K. H., & Deep, A. (2018). Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews, 369, 15-38.
Vul, A., & Dideikin, A. T. (2018). Graphene oxide and derivatives: the place in graphene family. Fronteirs in Physics, 103389/fphy.2018.00149.
Wang, X., Ma, Y., Sheng, X., Wang, Y., & Xu, H. (2018). Ultrathin polypyrrole nanosheets via Space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Letters, 18, 2217-2225.
Wang, Y., Chen, F., Liu, Z., Tang, Z., Yang, Q., Zhao, Y., Du, S., Chen, Q., & Zhi, C. (2019). A highly elastic and reversibly stretchable all-polymer supercapacitor. Angewandte Chemie International Edition, 58, 15707-15711.
Wang, Y., Zhang, L., Hou, H., Xu, W., Duan, G., He, S., Liu, K., & Jiang, S. (2020). Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 56, 173-200.
Wang, Y., Wu, X., Han, Y., & Li, T. (2021). Flexible supercapacitor: overview and outlooks. Journal of Energy Storage, 42, 103053.
Wang, T., Yan, L., He, Y., Alhassan, S. I., Gang, H., Wu, B., Jin, L., & Wang, H. (2022). Application of polypurrole-based adsorbents in the removal of fluoride: a review. Royal Society of Chemistry Advances, 12, 3505-3517.
Werneck, I. H. S. R., Assis, M. B. S., & Pereira, R. P. (2018). Molybdenum oxide micro- and nanorods: structure and thermal properties dependent on pertubation during synthesis. Materials Research Express, 5(105009), 1-16.
Willfahrt, A., Steiner, E., Hotzel, J., & Crispin, X. (2019). Printable acid-modified corn starch as non-toxic, disposable hydrogel-polymer electrolyte in supercapacitors. Applied Physics A: Materials Science and Processing, 125(474), 1-10.
Wu S., Chen, Y., Jiao, T., Zhou, J., Cheng, J., Liu, B., Yang, S., Zhang, K., & Zhang, W. (2019). An aqueous Zn-Ion hybrid supercapacitor with high energy density and ultrastability up to 80.000 cycles. Advanced Energy Materials, 9(47), 1902915.
Xia, D. D., Gong, F., Pei, X., Wang, W., Li, H., Zeng, W., Wu, M., & Papavassiliou, D. V. (2018). Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review. Chemical Engineering Journal, 18, 1-75.
Xie, J., Yang, P., Wang, Y., Qi, T., Lei, Y., & Li, C. M. (2018). Puzzles and confusions in supercapacitor and battery: theory and solutions. Journal of Power Sources, 401, 213-223.
Xu, B., Wanga, H., Zhua, Q., Suna, N., Anasoric, B., Hua, L., Wanga, F., Guanb, Y., & Gogotsic, Y. (2018). Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Materials, 12, 128-136.
Xu, B., Zhang, H., Mei, H., & Sun, D. (2020). Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 420, 213438.
Yadav, S., & Devi, A. (2020). Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials. Journal of Energy Storage, 30, 101486.
Yang, H., Han, X., Douka, A. I., Huang, L., Gong, L., Xia, C., Park, H. S., & Xia, B. Y. (2020). Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 31(12), 1-29.
Ye, W., Wang, H., Ning, J., Zhong, Y., & Hu, Y. (2020). New TYPES Of hybrid electrolytes for supercapacitors. Journal of Energy Chemistry, 57, 219-232.
Yi, T. F., Sari, H. M. K., Li, X., Wang, F., Zhu, Y. R., Hu, J., Zhang, J., & Li X. (2021). A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy, 85, 105955.
Yin, J., Zhang, W., Alhebshi, N. A., Salah, N., & Alshareef, H. N. (2020). Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 4(3), 1900853.
You, X., Mirsa, M., Gregori, S., & Mohanty, A. K. (2018). Preparation of an Electric double layer capacitor (EDLC) using miscanthus-derived biocarbon. ACS Sustainable Chemistry & Engineering, 6, 318-324.
Yu, L., & Chen, G. Z. (2019). Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapacttery. Frontiers in Chemistry, doi: 10.3389/fchem.2019.00272.
Yu, X., & Manthiram, A. (2018). Electrode-electrolyte interfaces in lithium-based batteries. Energy & Environmental Science, 11, 527-543.
Yu, P., Cao, G., Yi, S., Zhang, X., Li, C., Sun, X., Wang, K. & Ma, Y. (2018). Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale, 10, 5906-5913.
Yu, F., Wang, L., Wang, Y., Shen, X., Cheng, Y., & Ma, J. (2019). Faradaic reactions in capacitive deioniztion for desalination and ion separation. Journal of Matererials Chemistry A, 7, 15999-16028.
Yu, W., Sisi, L., Haiyan, Y. & Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: a review. Royal Society of Chemistry Advances, 26, 15328-15345.
Zare, E. N., Makvandi, P., Ashtari, B., Rossi, F., Motahari, A., & Perale, G. (2020). Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. Journal of Medicinal Chemistry, 63, 1-22.
Zhang, L., Hu, X., Wang, Z., Sun, F., & Dorrell, D. G. (2018a). A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renewable and Sustainable Energy Reviews, 81, 1868-1878.
Zhang, L., Du, W., Nautiyal, A., Liu, Z., & Zhang, X. (2018b). Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Science China Materials, 61, 303-352.
Zou, C., Zhang, L., Hu, X., Wang, Z., Wik, T., & Pecht, M. (2018). Areview of fractional-order techiniques applied to lithium-ion batteries, lead-acid batteroes, and supercapacitors. Journal pf Power Sources, 390, 286-296.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Izabella Helena Werneck Soares Rezende; Luiz Eduardo Pizarro Borges; Robson Pacheco Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.