Bacillus: a eco-friendly source for plant development and sanity

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.37199

Keywords:

Microbial inoculants; Modulation of plant growth; Plant protection.

Abstract

Bacillus are non-pathogenic gram-positive bacteria capable of producing resistant spores. They have several beneficial characteristics to crop production, such as increased plant growth, resistance to abiotic/biotic stresses, nutritional improvement, and potential for bioremediation of contaminated soils. The use of microorganisms in agriculture has increased due to the reduction in the use of agrochemicals, and sustainable production. Therefore, the present study was based on bibliographical research on the current state of the art of biotechnological prospecting and obtaining commercial products of Bacillus for the agricultural sector. The search was conducted through the Google Academic platform limiting the search to the years 2015 to 2020. Papers that explained in vitro or in vivo prospecting methodologies of Bacillus with promoter or protective activity of plants and those that described microbial inoculants with this genus were selected. Different species of Bacillus can modulate plant growth producing plant hormones. Molecular biology tools such as DNA sequencing and PCR are applied to the study of genes involved in plant growth modulation by Bacillus such as AcPho, ipdC and asbA. For the elaboration of agricultural bioproducts, vegetative structures or endospores are used, under an optimal concentration of 1 x 108 CFU/mL. In the face of species diversity, many have not yet been studied and are promising to become bioproducts. This fact is enhanced by the immeasurable applicability of Bacillus.

Author Biography

João Alencar Pamphile, Universidade Estadual de Maringá

In memorian

References

Adapar - Agência de Defesa Agropecuária do Paraná. (2020). Agrotóxicos no Paraná: faça sua pesquisa. http://celepar07web.pr.gov.br/agrotoxicos/pesquisar.asp.

Alves, K. C. S., De Almeida, M. E. M., Glória, J. C., Dos Santos, F. A., Pereira, K. D., De Castro. D. P. & Mariúba, L. A. M. (2018). Bacillus subtilis: uma versátil ferramenta biotecnológica. Scentia Amazonia, 7 (2), 15–23.

Azevedo, J. L. (1998). Microrganismos endofíticos. In: Melo, I. S., & Azevedo, J. L. DE (Org.). Ecologia Microbiana. Jaguariúna: Embrapa-CNPMA. 117–137.

Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., & Nicot, P. C. (2015). Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 6, 1–14.

Beretta, D., & Júnior, A. E. (2017). Isolamento de biossurfactantes e hidrolases a partir do crescimento de Bacillus sp. 16–19.

Bokhari, A., Essack, M., Lafi, F.F., Andres-Barrao, C., Jalal, R., Alamoudi, S., Razali, R., Alzubaidy, H., Shah, K. H., Siddique, S., Bajic, V.B., Hirt, H., Saad, M. M. (2019). Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Scientific Reports, 9, (1),1–13.

Chagas, L. F. B., Martins, A.L.L., De Carvalho Filho, M.R., Miller, L.O., De Oliveira, J.C., & Chagas Junior, A. F. (2017). Bacillus subtilis E Trichoderma sp . No incremento da biomassa em plantas de soja, feijão-caupi , milho e arroz. Revista Agri-Environmental Sciences, 3 (2), 10–18.

Chamedjeu, R., Masanga, J., Matiru, V., & Runo, S. (2019). Potential Use of Soil Bacteria Associated with Potato Rhizosphere as Bio-control Agents for Effective Management of Bacterial Wilt Disease Phenomics and Candidate genes for Production and Adaptive traits in Indigenous Poultry View project Genetic engineer. Journal of Microbiology Research, 9 (1)12–24.

Cruz, A. P., Calazans, G. M., Cordeiro, J., & Quintão, P. L. (2018). Avaliação da influência da salinidade na germinação, no desenvolvimento e diversidade de microrganismos endofíticos da leguminosa Mucuna aterrima. Research, Society and Development, 7 (2), e1272193.

Dubey, A., Malla, M. A., Kumar, A., Dayanandan, S., & Khan, M. L. (2020). Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Reviews in Biotechnology, 1–22. https://doi.org/10.1080/07388551.2020.1808584.

Gabardo, G., Pria, M. D., Prestes, A. M. C., & Da Silva, H. L. (2020). Trichoderma asperellum E Bacillus subtilis Como Antagonistas No Crescimento De Fungos Fitopatogênicos in vitro. Brazilian Journal of Development, 6 (8), 55870–55885.

Garcia, T. V., Knaak, N., & Fiuza, L. M. (2016). Bactérias endofíticas como agentes de controle biológico na orizicultura. Arquivos do Instituto Biológico, 82, 1–9.

Gonçalves, O. S., Almeida, T. C., Vilela, C. S., & Machado, D. C. (2017). PROSPECTING OF Bacillus subtilis as biocontrol agents against biocontrole contra Fusarium sp. Revista Mirante, 10 (1), 132–142.

Ikeda, A. C., Savi, D. C., Hungria, M., Kava, V., Glienke, C., & Galli-Terasawa, L.V. (2020). Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum - Agronomy, 42(e44364), 1–11.

Jochum, M. D., Mcwilliams, K. L., Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A., & Jo, Y. K. (2019). Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers in Microbiology, 10, 1–9.

Liu, S. L., Wu, W. J., & Yung, P. T. (2015). Effect of sonic stimulation on Bacillus endospore germination. FEMS Microbiology Letters, 363 (1), 1–7.

Lyngwi, N. A., Nongkhlaw, M., Kalita, D., & Joshi, S. R. (2016). Bioprospecting of plant growth promoting bacilli and related genera prevalent in soils of pristine sacred groves: Biochemical and molecular approach. PLoS ONE, 11 (4), 1–13.

Maheshwari, R., Bhutani, N., Bhardwaj, A., & Suneja, P. (2019). Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential. Biocatalysis and Agricultural Biotechnology, 20, 1–11.

Mapa - Ministério Da Agricultura Pecuária E Abastecimento. (2020). Mapa bate recorde de registros de defensivos agrícolas de controle biológico. https://www.gov.br/agricultura/pt-br/assuntos/noticias/mapa-bate-recorde-de-registros-de-defensivos-agricolas-de-controle-biologico.

Mattei, D., Henkemeier, N. P., Heling, A. L., Lorenzetti, E. , Kuhn, O. J., & Stangarlin, J. R. (2017). Produtos fitossanitários biológicos disponíveis. In: ZAMBOM, M. A. et al. (Org.). Ética do cuidado, legislação e tecnologia na agropecuária. 1. ed. Marechal Candido Rondon: Centro de Ciências Agrárias/ Unioeste, 124–154.

Nofiani, R., De Mattos-Shipley, K., Lebe, K. E., Han, L. C., Iqbal, Z., Bailey, A. M., Willis, C. L., Simpson, T. J., & Cox, R. J. (2018). Strobilurin biosynthesis in Basidiomycete fungi. Nature Communications, 9 (1), 1–11.

Pascholati, S. F., Melo, T. A. De, & Durigan, J. (2015). Indução de resistência contra patógenos: definição e perspectivas de uso. Visão agrícola, 13, 110–112.

Pereira, E. L., & Martins, B. A. (2016). Processos Biotecnológicos Na Produção De Bioinseticidas. Revista da Universidade Vale do Rio Verde, 14, 714–734.

Posada, L. F., Ramírez, M., Ochoa-Gómez, N., Cuellar-Gaviria, T. Z., Argel-Roldan, L. E., Ramírez, C. A., & Villegas-Escobar, V. (2016). Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Scientia Horticulturae, 212 (81–90).

Sessitsch, A., Brader, G., Pfaffenbichler, N., Gusenbauer, D., & Mitter, B. (2018). The contribution of plant microbiota to economy growth. Microbial Biotechnology, 11 (5), 801–805.

Shameer, S. (2016). Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Annals of Microbiology, 66 (3), 1315–1327.

Silva, C. Dos S., Dos Santos, J. M. C., Da Silva, J. M., Tenório, F. A., Guedes-Celestino, E. L. F., De Cristo, C. C. N., Nascimento, M. S., Montaldo, Y. C., De Oliveira, J. U. L., & Dos Santos, T. M. C. (2019). Bioprospecting of endophytic bacteria (Bacillus spp.) from passionfruit (Passiflora edulis Sims f. flavicarpa) for plant growth promotion. Australian Journal of Crop Science, 13 (8), 1369–1374.

Soares, A. S., Costa, L. T. M., Da Silva, C. A., Do Santos, S. F., & De Souza Aguiar, R. W. (2020). Bioprospecting of Bacillus thuringiensis in the control of Aedes aegypti larvae. Brazilian Journal of Biological Sciences, 7 (16), 175–191.

Soares, C. C., Druzian, J. I., & Lobato, A. K. D. C. L. (2018). Estudo prospectivo de patentes relacionadas a utilização do Bacillus subtilis em bioprocessos. Cadernos de Prospecção, 11 (6), 295.

Souza, P. S. S., Nascimento, R. C., Da Silva, T. R., Nóbrega, R. S. A., & Fernandes Junior, P. I. (2018). Eficiência agronômica de bactérias promotoras de crescimento vegetal nativas do Semiárido na produtividade de milho ‘ BRS Gorutuba ’. In: Anais da XIII Jornada de Iniciação Científica da Embrapa Semiárido. 2018, Petrolina: Embrapa Semiárido. 305–309.

Turibio, T. De O., Ferreira, E. M. S., Sousa, F. M. P., Silva, J. F. M., & Pimenta, R. S. (2018). Verificação da Produção de Substâncias Antimicrobianas por Fungos Endofíticos Associados à Soja (Glycine max (L.) Merrill) no Estado do Tocantins. Revista Cereus, 10 (3), 92–102.

Wang, W., Bai, R., Cai, X, Li, P., & Ma, L. (2017). Separation and determination of peptide metabolite of Bacillus licheniformis in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography. Journal of Separation Science, 40 (22), 4446–4452.

Downloads

Published

17/11/2022

How to Cite

MATTEI, D.; PAMPHILE, J. A. .; OLIVEIRA, J. A. dos S. de .; BATTISTUS , A. G. Bacillus: a eco-friendly source for plant development and sanity. Research, Society and Development, [S. l.], v. 11, n. 15, p. e285111537199, 2022. DOI: 10.33448/rsd-v11i15.37199. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37199. Acesso em: 29 nov. 2024.

Issue

Section

Review Article