Hyperalphalipoproteinemia: a literature review





Hyperalphalipoprotein; HDL; CETP; SR-BI.


Objective: To analyze and address the causes and alterations related to hyperalphalipoproteinemia, comparing the general patterns of the population. Methodology: An Integrative Literature Review was conducted, in which key words specified in the Pubmed and Science Direct databases were used: "hyperalphalipoprotenemia" OUR "hyperalphalipoprotein" OUR "HDLc". Results: Mutations in individuals with hyperalphalipoproteinemia, single nucleotide polymorphisms, deleterious genes, cetp gene, hepatic SR-BI, endothelial lipase (EL) gene, splicing defect, genes and proteins ANGPTL3 and ANGPTL8 can be highlighted. In addition, changes in surface fluidity and HDLc membrane constituents were noted, changes in the RCT process and in the ability to increase expression and to activate endothelial synthesis of nitric oxide (NO). Furthermore, changes caused by CETP deficiency cannot be related to a cardioprotective, antiatherogenic and anti-inflammatory effect, and even a U-shaped relationship between plasma HDLc and ischemic electrocardiographic changes, where CETP deficiency accumulates. Moreover, the presence of the P376L variant, intervenenegatively in the processing of SR-BI. Finally, individuals with higher HDLc levels exhibit cholesterol particles enriched by apolipoproteins, which cause changes to the anti-inflammatory action of HDL itself. Conclusion: Changes in the physiological functioning of HDLc, which cause hyperalphalipoproteinemia, are caused by several mutations that lead to changes in the membrane mechanism, CETP, SR-BI and inflammatory processes. More research is needed to conclude about the cardioprotective effect.


Ballout, R. A., & Remaley, A. T. (2021). Chapter 28 - Pediatric dyslipidemias: lipoprotein metabolism disorders in children. (5 ed.), Bethesda: Biochemical And Molecular Basis Of Pediatric Disease. (pp.965-1022. https://doi.org/10.1016/B978-0-12-817962-8.00002-0

Cristancho, S. M., Goldszmidt, M., Lingard, L., & Watling, C. Qualitative research essentials for medical education. (2018). Singapore Med J. 59(12):622-627. 10.11622/smedj.2018093.

Ertek, S. (2018). High-density lipoprotein (HDL) dysfunction and the future of HDL. Current vascular pharmacology, 16(5):490-498. 10.2174/1570161115666171116164612.

Giammanco, A., Noto, N., Barbagallo, C. M., Nardi, E., Caldarella, R., Ciaccio, M., Averna, M. R., & Cefalu, A. B. (2021). Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life. Basel, 11(6): 581. 10.3390/life11060581

Gurevich, V., Olhovik, A., Sadovnikov, P., Nizhegorodtsev, M., & Philippov, A. (2017). Relationships between seasonal high density lipoprotein levels and immune cells count. Atherosclerosis. 263(1), 111-282.10.1016/j.atherosclerosis.2017.06.716

Hancock-Cerutti, W., Lhomme, M., Dauteuille, C., Lecocq, S., Chapman, M. J., Rader, D. J., Kontush, A., & Chchel, M. (2017). Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome. Journal Of Clinical Lipidology. Philadelphia, 11(5):1192-1200.e3. 10.1016/j.jacl.2017.06.018.

Hirano, K., Nagasaka, H., Kobayashi, K., Yamaguchi, S., Suzuki, A., Toda, T., & Doyu, M. (2014). Disease-associated marked hyperalphalipoproteinemia. Molecular Genetics And Metabolism Reports. 1: 264–268. 10.1016/j.ymgmr.2014.06.001.

Kaewkrasaesin, C., Chatchomchuan, W., Muanpetch, S., & Khovidhunkit, W. (2021). ANGPTL3 and ANGPTL8 in Thai subjects with hyperalphalipoproteinemia and severe hypertriglyceridemia. Journal Of Clinical Lipidology. 15(5):752-759. 10.1016/j.jacl.2021.08.059.

Khoury, P. E., Plengpanich, W., Fisdal, E., Goff, W. L., Khovidhunkit, W., & Guerin, M. (2014). Improved plasma cholesterol efflux capacity from human macrophages in patients with hyperalphalipoproteinemia. Atherosclerosis. 234(1):193-9. 10.1016/j.atherosclerosis.2014.02.032.

Laurinavicius, A., Rocha, V., & Bortolotto, L. A. (2016). HDL functionality modulates carotid artery intima-media thickness in individuals with marked hyperalphalipoproteinemia. Vascular Medicine. 67(13):2290. 10.1016/S0735-1097(16)32291-4

Libby, P. (2021). Inflammation during the life cycle of the atherosclerotic plaque. Cardiovascular Research, 22;117(13):2525-2536. 10.1093/cvr/cvab303.

Marais, A. D. (2018). Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology, 51(2):165-176. 10.1016/j.pathol.2018.11.002.

Mazer, N., Giulianini, F., Paynter, N. P., Jordan, P., & Mora, S. (2013). A comparison of the theoretical relationship between HDL size and the ratio of HDL cholesterol to apolipoprotein A-I with experimental results from the Women's Health Study. Clinical Chemistry. 59(6): 949–958. 10.1373/clinchem.2012.196949

Mccormick, S. P. A., & Schneider, W. J. (2019). Lipoprotein (a) catabolism: a case of multiple receptors. Pathology, Feb;51(2):155-164. 10.1016/j.pathol.2018.11.003.

Menegatti, E., Tarugi, P., Bonetti, F., & Vece, F. D. (2009). HDL distribution and hyperalphalipoproteinemia in outpatients of a lipid clinic. Nutrition, Metabolism And Cardiovascular Diseases. Nov; 19(1)1-32.10.1016/S0939-4753(09)70065-1.

Oates, C. P., Koenig, D., Rhyne, J., Bogush, N., O’Connell, J., Michell, B. D., & Miller, M. (2018). Novel polymorphisms associated with hyperalphalipoproteinemia and apparent cardioprotection. Journal Of Clinical Lipidology. Baltimore, 12(1)110-115. https://doi.org/10.1016/j.jacl.2017.10.021.

Okada, T., Ohama, T., Okazaki, M., Kanno, K., Matsuda, H., Sairyo, M. Zhu, Y. Saga, A. Kobayashi, T. Masuda, D., Koseki, M., Nishida, M., Sakata, Y., & Yamashita, S. (2018). Particle number analysis of lipoprotein subclasses by gel permeation HPLC in patients with cholesteryl ester transfer protein deficiency. Plos One. 13(1)1-13. https://doi.org/10.1371/journal.pone.0190875.

Okada, T., Ohama, T., Takafuji, K., Kanno, K., Matsuda, H., Sairyo, M., Zhu, Y., Saga, A., Kobayashi, T., Masuda, D., Koseki, M., Nishida, M., Sakatad, Y., & Yamashita, S. (2019). Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency. Journal Of Clinical Lipidology. Suita, 13(2):317-325. 10.1016/j.jacl.2019.01.002.

Quévillon Huberdeau, M., & Simard, M. J. (2018). A guide to micro RNA‐mediated gene silencing. The FEBS journal, 286(4)642-652. https://doi.org/10.1111/febs.14666

SBC - Sociedade Brasileira de Cardiologia. (2019). Atualização da Diretriz Brasileira de Dislipidemia e Prevenção da Aterosclerose – 2017. Arq. Bras. Cardiol. Ago; 109(2): 1-92. http://publicacoes.cardiol.br/2014/diretrizes/2017/02_DIRETRIZ_DE_DISLIPIDEMIAS.pdf

Vigna, G. B., Satta, E., Bernini, F., Boarini, S., Bosi, C., Giusto, L., Pinotti, E., Tarugi, P., Vanini, A., Volpato, S., Zimetti, F., Zuliani, G., & Favari, E. (2014). Flow-mediated dilation, carotid wall thickness and HDL function in subjects with hyperalphalipoproteinemia. Nutrition, Metabolism & Cardiovascular Diseases. 24(7):777-83. 10.1016/j.numecd.2014.02.010.

Yamashita, S., & Matsuzawa, Y. (2015). Low HDL and High HDL Syndromes. Encyclopedia Of Endocrine Diseases. 1(1) 327-339. 10.1016/B978-0-12-801238-3.04000-9

Zhang, J., Niimi, M., Yang, D., Liang, J., Xu, J., Kimurad, T., Mathew, A. V., Guo, Y., Fan, Y., Zhu, T., Song, J., Ackermann, R., Koike, Y., Schwendeman, A., Lai, L., Pennathur, S., Garcia-Barrio, M., Fan, J., & Chen, Y. E. (2017). Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arterioscler Thromb Vasc Biol. Yamanashi, 37(6):1068-1075. 10.1161/ATVBAHA.117.309114.



How to Cite

RODRIGUES, P. R. .; MARTINS, L. .; SILVÉRIO, A. C. P. Hyperalphalipoproteinemia: a literature review. Research, Society and Development, [S. l.], v. 11, n. 15, p. e525111537461, 2022. DOI: 10.33448/rsd-v11i15.37461. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37461. Acesso em: 9 feb. 2023.



Review Article