Description of health patterns of fully vaccinated older adults hospitalized due to COVID-19 in Brazil through association rules

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37666

Keywords:

COVID-19; Symptoms; Chronic disease; Aged; Hospitalization; Data mining.

Abstract

The coronavirus disease 2019 (COVID-19) is a global public health problem. Since the beginning of the pandemic, notified in March 2020, Brazil has shown high lethality from the disease in older adults. From 2012 to 2018, the country showed an increase of 20% in the older adults’ population. Despite the completeness of vaccine protocols against COVID-19 in the country, there is evidence that this age group, associated with the presence of comorbidities, can be a predictor of the occurrence of hospitalization and severe symptoms due to COVID-19. In this direction, this paper aimed to identify patterns and relationships between symptoms, comorbidities, gender, Intensive Care Unit (ICU) admission, and survival status of older adults, fully vaccinated against COVID-19, hospitalized in Brazil. For this purpose, we perform association rules mining on the OpenDataSUS database. For the group of patients with comorbidity, associations with conditions of oxygen saturation (SpO2) <95%, dyspnea and death were predominant; The female sex was associated with survival and the presence of comorbidities, while the male sex with death and admission to the ICU; for patients admitted to the ICU and who died, associations with SpO2<95%, dyspnea, presence of comorbidities and use of ventilatory support were found. The association rule mining procedure has been shown to be useful in surveying the hospitalization profile of these patients.

References

Alimohamadi, Y., Sepandi, M., Taghdir, M., & Hosamirudsari, H. (2020). Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis. Journal of preventive medicine and hygiene, 61(3), 304–312. https://doi.org/10.15167/2421-4248/jpmh2020.61.3.1530.

Alsaffar, W. A., Alwesaibi, A. A., Alhaddad, M. J., Alsenan, Z. K., Alsheef, H. J., Alramadan, S. H., Aljassas, H. A., Alsaghirat, M. A., & Alzahrani, H. J. (2022). The Effectiveness of COVID-19 Vaccines in Improving the Outcomes of Hospitalized COVID-19 Patients. Cureus, 14(1), e21485. https://doi.org/10.7759/cureus.21485.

Andryukov, B. G., & Besednova, N. N. (2021). Older adults: panoramic view on the COVID-19 vaccination. AIMS public health, 8(3), 388–415. https://doi.org/10.3934/publichealth.2021030.

Assis, S. J. C., Lopes, J. M., Guedes, M., Sanchis, G., Araujo, D. N., & Roncalli, A. G. (2021). Primary health care and social isolation against COVID-19 in Northeastern Brazil: Ecological time-series study. PloS one, 16(5), e0250493. https://doi.org/10.1371/journal.pone.0250493.

Atkins, J. L., Masoli, J., Delgado, J., Pilling, L. C., Kuo, C. L., Kuchel, G. A., & Melzer, D. (2020). Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. The journals of gerontology. Series A, Biological sciences and medical sciences, 75(11), 2224–2230. https://doi.org/10.1093/gerona/glaa183.

Baqui, P., Bica, I., Marra, V., Ercole, A., & van Der Schaar, M. (2020a). Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. The Lancet Global Health, 8(8), 1018-1026.

Baqui, P., Marra, V., Alaa, A. M., Bica, I., Ercole, A., & van der Schaar, M. (2021b). Comparing COVID-19 risk factors in Brazil using machine learning: the importance of socioeconomic, demographic and structural factors. Scientific reports, 11(1), 15591. https://doi.org/10.1038/s41598-021-95004-8.

Bee, G. R., Pinto, D. D., da Silva, A. C. C. A., Oliveira, T., & Arrigo, J. da S. (2022). Vacinas contra COVID-19 disponíveis no Brasil / Vaccines against COVID-19 available in Brazil. Brazilian Journal of Development, 8(1), 6246–6263. https://doi.org/10.34117/bjdv8n1-422.

Brazil (2021). Coronavirus panel.

Candido, D. S., Claro, I. M., de Jesus, J. G., Souza, W. M., Moreira, F., Dellicour, S., Mellan, T. A., du Plessis, L., Pereira, R., Sales, F., Manuli, E. R., Thézé, J., Almeida, L., Menezes, M. T., Voloch, C. M., Fumagalli, M. J., Coletti, T. M., da Silva, C., Ramundo, M. S., Amorim, M. R., & Faria, N. R. (2020). Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science (New York, N.Y.), 369(6508), 1255–1260. https://doi.org/10.1126/science.abd2161.

Capuano, A., Rossi, F., & Paolisso, G. (2020). Covid-19 Kills More Men Than Women: An Overview of Possible Reasons. Frontiers in cardiovascular medicine, 7, 131. https://doi.org/10.3389/fcvm.2020.00131.

Cash, R., Patel, V. (2020). Has COVID-19 subverted global health? The Lancet, 395 (10238) 1687-1688.

Chang, R., Elhusseiny, K. M., Yeh, Y. C., & Sun, W. Z. (2021). COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PloS one, 16(2), e0246318. https://doi.org/10.1371/journal.pone.0246318.

Connor, J., Madhavan, S., Mokashi, M., Amanuel, H., Johnson, N. R., Pace, L. E., & Bartz, D. (2020). Health risks and outcomes that disproportionately affect women during the Covid-19 pandemic: A review. Social science & medicine (1982), 266, 113364. https://doi.org/10.1016/j.socscimed.2020.113364.

Deng, Y., Liu, W., Liu, K., Fang, Y. Y., Shang, J., Zhou, L., Wang, K., Leng, F., Wei, S., Chen, L., & Liu, H. G. (2020). Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chinese medical journal, 133(11), 1261–1267. https://doi.org/10.1097/CM9.0000000000000824.

Elghazaly, S., Abu, E. S. H., Samy, S., AbdelFatah, M., Hassany, M., Khader, Y., Afifi, S., & Eid, A. (2022). The Impact of Comorbidities on COVID-19 Severity and Mortality in Egypt iproc. Jmir Publications, 8(1):e36576. doi: 10.2196/36576.

FGV - Fundação Getúlio Vargas (2021). Older adults Maps.

Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., Li, P., Zhou, Y., Lin, Y. F., Duan, Q., Luo, G., Fan, S., Lu, Y., Feng, A., Zhan, Y., Liang, B., Cai, W., Zhang, L., Du, X., Li, L., & Zou, H. (2020). Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. The Journal of infection, 80(6), 656–665. https://doi.org/10.1016/j.jinf.2020.03.041.

Hahsler, M., Buchta, C., Grun, B., & Hornik, K. (2022). Arules: Mining Association Rules and Frequent Itemsets, Package Version 1.7-3 of rproject.org.

Jacobs, L. G., Gourna Paleoudis, E., Lesky-Di Bari, D., Nyirenda, T., Friedman, T., Gupta, A., Rasouli, L., Zetkulic, M., Balani, B., Ogedegbe, C., Bawa, H., Berrol, L., Qureshi, N., & Aschner, J. L. (2020). Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PloS one, 15(12), e0243882. https://doi.org/10.1371/journal.pone.0243882.

Jean-Marc, A. (2001). Data mining for association rules and sequential patterns: sequential and parallel algorithms. Springer Science & Business Media.

Jin, J. M., Bai, P., He, W., Wu, F., Liu, X. F., Han, D. M., Liu, S., & Yang, J. K. (2020). Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Frontiers in public health, 8, 152. https://doi.org/10.3389/fpubh.2020.00152.

Koenig, S. M., & Truwit, J. D. (2006). Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clinical microbiology reviews, 19(4), 637–657. https://doi.org/10.1128/CMR.00051-05.

Lipsky, M. S., & Hung, M. (2020). Men and COVID-19: A Pathophysiologic Review. American journal of men's health, 14(5), 1557988320954021. https://doi.org/10.1177/1557988320954021.

Lv, G., Yuan, J., Xiong, X., & Li, M. (2021). Mortality Rate and Characteristics of Deaths Following COVID-19 Vaccination. Frontiers in medicine, 8, 670370. https://doi.org/10.3389/fmed.2021.670370.

Mejía, F., Medina, C., Cornejo, E., Morello, E., Vásquez, S., Alave, J., Schwalb, A., & Málaga, G. (2020). Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru. PloS one, 15(12), e0244171. https://doi.org/10.1371/journal.pone.0244171.

Mendes, E. V. (2018). The care of chronic conditions in primary health care. Revista Brasileira em Promoção da Saúde, 31 (2), 1-3.

Mi, J., Zhong, W., Huang, C., Zhang, W., Tan, L., & Ding, L. (2020). Gender, age and comorbidities as the main prognostic factors in patients with COVID-19 pneumonia. American journal of translational research, 12(10), 6537–6548.

Misra-Hebert, A. D., Hu, B., Pantalone, K. M., & Pfoh, E. R. (2021). Primary Care Health Care Use for Patients With Type 2 Diabetes During the COVID-19 Pandemic. Diabetes care, 44(9), 173–174. https://doi.org/10.2337/dc21-0853.

Moreno-Perez, O., Ribes, I., Boix, V., Martinez-García, M. Á., Otero-Rodriguez, S., Reus, S., Sánchez-Martínez, R., Ramos, J. M., Chico-Sánchez, P., Merino, E., & On behalf the COVID-19 ALC research group (2022). Hospitalized patients with breakthrough COVID-19: Clinical features and poor outcome predictors. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 118, 89–94. https://doi.org/10.1016/j.ijid.2022.02.007.

Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature reviews. Cardiology, 17(9), 543–558. https://doi.org/10.1038/s41569-020-0413-9.

Pan American Health Organization. (2021). What is primary health care?

Passos, V. M. A., Champs, A., Teixeira, R., Lima-Costa, M., Kirkwood, R., Veras, R., Nascimento, B. R., Nogales, A. M., Schmidt, M. I., Duncan, B. B., Cousin, E., Naghavi, M., & Souza, F. M. (2020). The burden of disease among Brazilian older adults and the challenge for health policies: results of the Global Burden of Disease Study 2017. Population health metrics, 18(Suppl 1), 14. https://doi.org/10.1186/s12963-020-00206-3.

OpenDataSUS Platform by Federal Government (2022).

PrabhuDas, M., Fuldner, R., Farber, D., Kuchel, G.A., Mannick, J., Nikolich-Zugich, J., Sen, R., & Turner, J. (2021). Research and resource needs for understanding host immune responses to SARS-CoV-2 and COVID-19 vaccines during aging. Nat Aging 1, 1073–1077. https://doi.org/10.1038/s43587-021-00156-x.

Raimondi, F., Novelli, L., Ghirardi, A., Russo, F. M., Pellegrini, D., Biza, R., Trapasso, R., Giuliani, L., Anelli, M., Amoroso, M., Allegri, C., Imeri, G., Sanfilippo, C., Comandini, S., Hila, E., Manesso, L., Gandini, L., Mandelli, P., Monti, M., Gori, M., & HPG23 Covid-19 Study Group (2021). Covid-19 and gender: lower rate but same mortality of severe disease in women-an observational study. BMC pulmonary medicine, 21(1), 96. https://doi.org/10.1186/s12890-021-01455-0.

Rocha, R., Atun, R., Massuda, A., Rache, B., Spinola, P., Nunes, L., Lago, M., & Castro, M. C. (2021). Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: a comprehensive analysis. The Lancet. Global health, 9(6), 782–792. https://doi.org/10.1016/S2214-109X(21)00081-4.

Shawkat, M., Mahmoud, B., & Ali, I.E. (2021). "A Novel Approach of Frequent Itemsets Mining for Coronavirus Disease (COVID-19)." European Journal of Electrical Engineering and Computer Science, 5(2), 5-12.

Shin, D. P., Park, Y. J., & Seo, J. (2018). Association Rules Mined from Construction Accident Data. KSCE J Civ Eng, 22 (4), 1027–1039 (2018). https://doi.org/10.1007/s12205-017-0537-6.

Tandan, M., Acharya, Y., Pokharel, S., & Timilsina, M. (2021). Discovering symptom patterns of COVID-19 patients using association rule mining. Computers in biology and medicine, 131, 104249. https://doi.org/10.1016/j.compbiomed.2021.104249.

Vaccination Brazil Platform by Federal Government (2022).

WHO - World Health Organization (2021). Panel COVID-19 by WHO.

Williams, G. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. Springer Science & Business Media.

Zhu, J., Yan, W., Zhun, L., & Liu, J. (2021). COVID-19 pandemic in BRICS countries and its association with socio-economic and demographic characteristics, health vulnerability, resources, and policy response. Infect Dis Poverty, 10 (97).

Downloads

Published

28/11/2022

How to Cite

OLIVEIRA, T. B. de .; RODRIGUES, L. S. .; SANTOS, W. R. F. dos .; HIRATA, M. Y.; SILVA, C. V. dos S. .; MAZUCHELI, J. . Description of health patterns of fully vaccinated older adults hospitalized due to COVID-19 in Brazil through association rules. Research, Society and Development, [S. l.], v. 11, n. 16, p. e36111637666, 2022. DOI: 10.33448/rsd-v11i16.37666. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37666. Acesso em: 29 nov. 2024.

Issue

Section

Health Sciences