Synthesis of iron oxide nanoparticles stabilized with sodium citrate and TMAOH

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37698

Keywords:

Iron oxide nanoparticles; Chemical Coprecipitation; Dynamic Light Scattering; Cytotoxicity.

Abstract

Iron oxide nanoparticles (IONPs) represents a class of magnetic and biocompatible nanomaterials that have been widely used in research and medical applications, such as hyperthermia studies, as contrast agents for magnetic resonance imaging, biosensors, among others. However, their application depends on factors as surface properties, size, and morphology being appropriately balanced. IONPs can be obtained by different synthesis methods, however, chemical coprecipitation represents a simpler, easier and faster route, in which aqueous solutions of precursors containing iron (Fe3+) and ferrous (Fe2+) ions are alkalized under control of temperature and pH. This study proposes to synthesize iron oxide nanoparticles by the chemical coprecipitation method and to stabilize them with sodium citrate (IONPs-CIT) and tetramethylammonium hydroxide (IONPs-TMAOH). Furthermore, to characterize the hydrodynamic diameter and the Zeta Potential of the samples by Dynamic Light Scattering. The cytotoxicity of IONPs- CIT in the MDA-MB-468 cell line was evaluated through the analysis of mitochondrial activity.

References

Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., & Ramakrishna, S. (2020). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials, 13(20), 4644.10.3390/ma13204644

Ali Dheyab, M., Aziz, A. A., & Jameel, M. S. (2021). Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules, 26(9), 2453. https://doi.org/10.3390/molecules26092453

Amatya, R., Hwang, S., Park, T., Min, K. A., & Shin, M. C. (2021). In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy. Pharmaceutics, 13(6), 871. https://doi.org/10.3390/pharmaceutics13060871

Andrade, Â. L., Fabris, J. D., Ardisson, J. D., Valente, M. A., & Ferreira, J. M. (2012). Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/454759

Ansari, M. J., Kadhim, M. M., Hussein, B. A., Lafta, H. A., & Kianfar, E. (2022). Synthesis and stability of magnetic nanoparticles. BioNanoScience, 12(2), 627-638. https://doi.org/10.1007/s12668-022-00947-5

Bezerra, T. P. W., Bandeira, A. R. G., de Lima, S. H. P., & de Andrade, P. L. (2022). A nanotecnologia aplicada ao desenvolvimento de fármacos: revisão integrativa da literatura. Research, Society and Development, 11(14), e99111436115-e99111436115. https://doi.org/10.33448/rsd-v11i14.36115

Bommakanti, V., Banerjee, M., Shah, D., Manisha, K., Sri, K., & Banerjee, S. (2022). An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. Environmental Research, 113919. https://doi.org/10.1016/j.envres.2022.113919

Brennan, G., Bergamino, S., Pescio, M., Tofail, S. A., & Silien, C. (2020). The effects of a varied gold shell thickness on iron oxide nanoparticle cores in magnetic manipulation, T1 and T2 MRI contrasting, and magnetic hyperthermia. Nanomaterials, 10(12), 2424.10.3390/nano10122424

Canaparo, R., Foglietta, F., Limongi, T., & Serpe, L. (2020). Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials, 14(1), 53. https://doi.org/10.3390/ma14010053

Crețu, B. E. B., Dodi, G., Shavandi, A., Gardikiotis, I., Șerban, I. L., & Balan, V. (2021). Imaging constructs: The rise of iron oxide nanoparticles. Molecules, 26(11), 3437. https://doi.org/10.3390/molecules26113437

da Silva Souto, R., da Silva Razini, S., Kauffmann, A. C., Silva, V. C. P., de Sousa Jr, P. T., Bakuzis, A., & Jacinto, M. J. (2022). Green synthesis of Fe3O4@ ZnO-supported Pd nanoparticles for oxidation and hydrogenation reactions in liquid systems. Research, Society and Development, 11(14), e109111436004-e109111436004. https://doi.org/10.33448/rsd-v11i14.36004

Dadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F., & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced drug delivery reviews, 138, 302-325. https://doi.org/10.1016/j.addr.2019.01.005

Estrela, C. (2018). Metodologia científica: ciência, ensino, pesquisa. Artes Médicas.

Fuller, E. G., Sun, H., Dhavalikar, R. D., Unni, M., Scheutz, G. M., Sumerlin, B. S., & Rinaldi, C. (2019). Externally triggered heat and drug release from magnetically controlled nanocarriers. Acs Applied Polymer Materials, 1(2), 211-220. https://doi.org/10.1021/acsapm.8b00100

Gawel, A. M., Singh, R., & Debinski, W. (2022). Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment—An Update. Biomedicines, 10(7), 1598. https://doi.org/ 10.3390/biomedicines10071598

Gialluca, V. D., de Lima, V. G. P., Caixeta, A., Castilho, M. L., & Raniero, L. J. (2021). Gold nanoparticles associated with temozolomide for glioblastoma Multiforme Treatment. Research, Society and Development, 10(11), e146101119406-e146101119406. http://dx.doi.org/10.33448/rsd-v10i11.19406

Hedayatnasab, Z., Dabbagh, A., Abnisa, F., & Daud, W. M. A. W. (2020). Synthesis and in-vitro characterization of superparamagnetic iron oxide nanoparticles using a sole precursor for hyperthermia therapy. Materials Research Bulletin, 132, 110975. https://doi.org/10.1016/j.materresbull.2020.110975

Hernández-Hernández, A. A., Aguirre-Álvarez, G., Cariño-Cortés, R., Mendoza-Huizar, L. H., & Jiménez-Alvarado, R. (2020). Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chemical Papers, 74(11), 3809-3824. https://doi.org/10.1007/s11696-020-01229-8

Köche, J. C. (2011). Fundamentos de metodologia científica. Editora Vozes.

Krukowski, S., Karasiewicz, M., & Kolodziejski, W. (2017). Convenient UV-spectrophotometric determination of citrates in aqueous solutions with applications in the pharmaceutical analysis of oral electrolyte formulations. Journal of food and drug analysis, 25(3), 717-722. https://doi.org/10.1016/j.jfda.2017.01.009

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110. https://doi.org/10.1021/cr068445e

Ludke, M., & Andre, M. E. D. A. (2013). Pesquisas em educação: uma abordagem qualitativa. São Paulo: E.P.U.

Mansoori, G. A. (2005). Principles of nanotechnology: molecular-based study of condensed matter in small systems. World Scientific.

Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics, 17(2), 1247-1248. 0018-9464/Sl/0300-1247$00.75 0 1981 IEEE

Mérida, F., Chiu-Lam, A., Bohórquez, A. C., Maldonado-Camargo, L., Pérez, M. E., Pericchi, L., & Rinaldi, C. (2015). Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates. Journal of magnetism and magnetic materials, 394, 361-371. https://doi.org/10.1016/j.jmmm.2015.06.076

Mokhosi, S. R., Mdlalose, W., Nhlapo, A., & Singh, M. (2022). Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics, 14(5), 937. https://doi.org/10.3390/ pharmaceutics14050937

Nandi, R., Mishra, S., Maji, T. K., Manna, K., Kar, P., Banerjee, S., & Pal, S. K. (2017). A novel nanohybrid for cancer theranostics: folate sensitized Fe 2 O 3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy. Journal of Materials Chemistry B, 5(21), 3927-3939. 10.1039/C6TB03292C

Nepomuceno, L. L., Carvalho, L. D., Soares, N. P., Cruz, V. D. S., Arnhold, E., Ferreira, J. L., & Samylla, M. C. S. (2021). Padronização metodológica in vitro do ensaio colorimétrico MTT para avaliação da atividade de formazan e dosagem do fármaco: padronização do teste colorimétrico MTT. Farmacologia Aplicada à Enfermagem: Aspectos Teóricos e Práticos, 149-161. 10.37885/201202541

Nguyen, T. T., Mammeri, F., & Ammar, S. (2018). Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: A review. Nanomaterials, 8(3), 149. doi:10.3390/nano8030149

Niculescu, A. G., Chircov, C., & Grumezescu, A. M. (2021). Magnetite nanoparticles: Synthesis methods–A comparative review. Methods. https://doi.org/10.1016/j.ymeth.2021.04.018

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Prokopiou, D., Pissas, M., Fibbi, G., Margheri, F., Kalska-Szostko, B., Papanastasiou, G., & Efthimiadou, E. (2021). Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells. Toxicology in Vitro, 72, 105094. https://doi.org/10.1016/j.tiv.2021.105094

Radoń, A., Drygała, A., Hawełek, Ł., & Łukowiec, D. (2017). Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Materials Characterization, 131, 148-156. https://doi.org/10.1016/j.matchar.2017.06.034

Rosensweig, R. E. (1985). Ferrohydrodynamics Cambridge University Press Cambridge. New York, Melbourne. https://doi.org/10.1002/zamm.19870670626

Rost, N. C. V., Sen, K., Savliwala, S., Singh, I., Liu, S., Unni, M., & Rinaldi, C. (2020). Magnetic particle imaging performance of liposomes encapsulating iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 504, 166675. https://doi.org/10.1016/j.jmmm.2020.166675

Severino, A. J. (2018). Metodologia do trabalho científico. Ed. Cortez.

Shabatina, T. I., Vernaya, O. I., Shabatin, V. P., & Melnikov, M. Y. (2020). Magnetic nanoparticles for biomedical purposes: Modern trends and prospects. Magnetochemistry, 6(3), 30. https://doi.org/10.3390/magnetochemistry6030030

Standard, I. (2009). Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. Geneve, Switzerland: International Organization for Standardization.

Stockert, J. C., Blázquez-Castro, A., Cañete, M., Horobin, R. W., & Villanueva, Á. (2012). MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta histochemica, 114(8), 785-796. https://doi.org/10.1016/j.acthis.2012.01.006

Unni, M., Uhl, A. M., Savliwala, S., Savitzky, B. H., Dhavalikar, R., Garraud, N., ... & Rinaldi, C. (2017). Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS nano, 11(2), 2284-2303. http://doi.org/10.1021/acsnano.7b00609

Wu, K., Liu, J., Saha, R., Peng, C., Su, D., Wang, Y. A., & Wang, J. P. (2021). Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS omega, 6(9), 6274-6283. https://doi.org/10.1021/acsomega.0c05845

Yin, R. K. (2015). O estudo de caso. Porto Alegre: Bookman.

Youhannayee, M., Nakhaei-Rad, S., Haghighi, F., Klauke, K., Janiak, C., Ahmadian, M. R., & Getzlaff, M. (2019). Physical characterization and uptake of iron oxide nanoparticles of different prostate cancer cells. Journal of Magnetism and Magnetic Materials, 473, 205-214. https://doi.org/10.1016/j.jmmm.2018.10.062

Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M. U., Akram, M. W., & Niu, X. (2018). Surface modification of magnetic iron oxide nanoparticles. Nanomaterials, 8(10), 810. https://doi.org/10.3390/nano8100810

Downloads

Published

02/12/2022

How to Cite

CÂNDIDO, M. A. .; ROST, N. C. V. .; FERREIRA, V. R. .; RANIERO, L. . Synthesis of iron oxide nanoparticles stabilized with sodium citrate and TMAOH. Research, Society and Development, [S. l.], v. 11, n. 16, p. e139111637698, 2022. DOI: 10.33448/rsd-v11i16.37698. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37698. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings