Monitoring the stability of the xanthophyll fucoxanthin in microalga and seaweed biomasses, and extracts stored at low temperatures

Authors

DOI:

https://doi.org/10.33448/rsd-v11i15.37712

Keywords:

Phaeophyceae; Fucoxanthin isomers; Carotenoids; UHPLC; Bacillariophyceae.

Abstract

The analysis of fucoxanthin (FCX) in algal biomasses presents some limitations, especially regarding the sample preservation after collection until extraction of the pigment. FCX stability was evaluated in biomass samples of one diatom and three brown seaweed species (Phaeophyceae) and their extracts stored at -20ºC and -80ºC, for 60 days. Fucoxanthin was quantified through UHPLC-DAD. The methanolic extracts of the micro/macroalga biomasses stored at -20ºC and -80ºC were more effective in preserving the xanthophyll, comparatively to the algal biomasses. Besides, the chromatographic analysis showed an increase in the FCX’s peak retention time along the sample storage, possibly due to the trans→cis isomerization of the molecule. Such information is relevant for choosing the best protocol for storing and preserving at most FCX, because changes in the geometric conformations of the molecule over storage strongly affects its biological activities.

References

Ambati, R. R., Gogisetty, D., Aswathanarayana, R. G., Ravi, S., Bikkina, P. N., Bo, L., & Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition, 59(12), 1880–1902.

Aparicio-Ruiz, R., Mínguez-Mosquera, M. I., & Gandul-Rojas, B. (2011). Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food Composition and Analysis: An Official Publication of the United Nations University, International Network of Food Data Systems, 24(6), 811–820.

Aziz, E., Batool, R., Akhtar, W., Rehman, S., Shahzad, T., Malik, A., Shariati, M., Laishevtcev, A., Plygun, S., Heydari, M., Rauf, A., & Arif, S., A. (2020). Xanthophyll: Health benefits and therapeutic insights. Life Sciences, 240: 1-12.

Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K. I., Boulanger, R., Dufour, D., & Westby, A. (2010). Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chemistry, 121(2), 348–357.

Britton, G., & Khachik, F. (2009). Carotenoids in Food. In Carotenoids. Basel: Birkhäuser Basel.

Butler, T. O., McDougall, G. J., Campbell, R., Stanley, M. S., & Day, J. G. (2017). Media screening for obtaining Haematococcus pluvialis red motile macrozooids rich in astaxanthin and fatty acids. Biology, 7(1), 1-15.

Christaki, E., Bonos, E., Giannenas, I., & Florou-Paneri, P. (2013). Functional properties of carotenoids originating from algae: Functional properties of algal carotenoids. Journal of the Science of Food and Agriculture, 93(1), 5–11.

Foo, S. C., Yusoff, F. M., Ismail, M., Basri, M., Yau, S. K., Khong, N. M., Chan, K., & Ebrahimi, M. (2017). HPLC fucoxanthin profiles of a microalga, a macroalga and a pure fucoxanthin standard. Data in Brief, 10, 583-586.

Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., Affana, A, Oh, C., Jung, W., & Jeon, Y. J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), 2045-2051.

Honda, M. (2020). Nutraceutical and Pharmaceutical Applications of Carotenoids. Pigments from Microalgae Handbook. Springer: Germany.

Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Science, 67(5), 771-783.

Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14 (7), 13763-13781.

Nakazawa, Y., Sashima, T., Hosokawa, M., & Miyashita, K. (2009). Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. Journal of Functional Foods, 1(1), 88-97.

Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J. F. (2019). Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, 17(11), 1-21.

Pangestuti, R., Siahaan, E. A., & Kim, S-K. (2018). Photoprotective substances derived from marine algae. Marine Drugs, 16(11): 1-16.

Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid presents in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806-1828.

Piovan, A., Seraglia, R., Bresin, B., Caniato, R., & Filippini, R. (2013). Fucoxanthin from Undaria pinnatifida: Photostability and coextractive effects. Molecules, 18(6), 6298-6310.

Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L. R., Hosokawa M., & Miyashita, K. (2009). Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chemistry, 115(2), 501-508.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-project.org/.

Rodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., & Ribot, J. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93.

Ryckebosch, E., Muylaert, K., Eeckhout, M., Ruyssen, T., & Foubert, I. (2011). Influence of drying and storage on lipid and carotenoid stability of the microalga Phaeodactylum tricornutum. Journal of Agricultural and Food Chemistry, 59(20), 11063-11069.

Schoefs, B. (2002). Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science & Technology, 13(11), 361-371.

Teixeira, J., Feio, M., & Figueira, M. L. (2014). O papel do stress oxidativo no envelhecimento e na demência. Psilogos: Revista do Serviço de Psiquiatria do Hospital Fernando Fonseca, 12, 43-57.

Wood, L. G., Garg, M. L., Blake, R. J., Garcia-Caraballo, S., & Gibson, P. G. (2005). Airway and circulating levels of carotenoids in asthma and healthy controls. Journal of the American College of Nutrition, 24(6), 448-455.

Yabuzaki J. (2017). Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database (Oxford), 2017(1), bax004.

Zhao, D., Kim, S. M., Pan, C. H., & Chung, D. (2014). Effects of heating, aerial exposure and illumination on stability of fucoxanthin in canola oil. Food Chemistry, 145, 505-513.

Downloads

Published

26/11/2022

How to Cite

SCHMITZ, C.; NUNES, A.; BAUER , C. M. .; BONOMI-BARUFI, J.; MARASCHIN, M. Monitoring the stability of the xanthophyll fucoxanthin in microalga and seaweed biomasses, and extracts stored at low temperatures. Research, Society and Development, [S. l.], v. 11, n. 15, p. e577111537712, 2022. DOI: 10.33448/rsd-v11i15.37712. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37712. Acesso em: 22 nov. 2024.

Issue

Section

Agrarian and Biological Sciences