Diatomite filler for resin composites application – A new approach for materials improvement

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37738

Keywords:

Diatomaceous earth; Composite Resins; Strength.

Abstract

The aim of this study was to evaluate physical-mechanical properties, degree of conversion, and chemical stability of a nanohybrid composite containing diatomite as filler. Degree of conversion (DC%) of diatomite-containing composite (Zirconfill®) was performed using FTIR immediately, and 1-, and 7-days post-curing. SEM was conducted to evaluate the surface of the resin after curing and measure particles size. Also, elemental characterization was performed to verify the major components of the composite through EDS. Mechanical characterization using 3-point bending test was performed prior and after thermo-cycling (10000 cycles) (n=10). Knoop microhardness (KHN) was used to characterize mechanical stability after chemical solutions aggression (water, juice, coffee, coke) up to 28 days (n=10/solution). After data normality evaluation using Shapiro-Wilk, One-way ANOVA and Tukey post hoc were conducted to verify differences between groups for DC% and mechanical properties. Split-plot ANOVA was used to compare groups for microhardness characterization (α=0.05). Immediate DC was 60% and significantly increased up to 80% at 7 days (p<0.05). Flexural strength of the diatomite-containing composite was 136.2 (23.7) MPa and significantly decreased to 75.1 (10.2) as a result of thermo-cycling. The flexural modulus was not significantly affected by the thermo-cycling (p>0.05). All the dietary solutions affected the KHN of the composite up to 21 days. For 28 days, the KHN evidenced and stabilization regarding all the solutions. Diatomite-containing composites present good degree of conversion and relevant mechanical properties and demonstrate time-dependent stability against chemical degradation.

References

Cacciotti, I., Rinaldi, M., Fabbrizi, J., & Nanni, F. (2019). Innovative polyetherimide and diatomite based composites: influence of the diatomite kind and treatment. Journal of Materials Research and Technology, 8(2), 1737–1745. https://doi.org/10.1016/j.jmrt.2018.12.004

Da Rosa Rodolpho, P. A., Donassollo, T. A., Cenci, M. S., Loguércio, A. D., Moraes, R. R., Bronkhorst, E. M., Opdam, N. J. M., & Demarco, F. F. (2011). 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dental Materials, 27(10), 955–963. https://doi.org/10.1016/j.dental.2011.06.001

de Souza Araújo, I. J., de Paula, A. B., Bruschi Alonso, R. C., Taparelli, J. R., Innocentini Mei, L. H., Stipp, R. N., & Puppin-Rontani, R. M. (2018). A novel Triclosan Methacrylate-based composite reduces the virulence of Streptococcus mutans biofilm. PLOS ONE, 13(4), e0195244. https://doi.org/10.1371/journal.pone.0195244

Ferracane, J. L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials, 22(3), 211–222. https://doi.org/10.1016/j.dental.2005.05.005

Ferracane, J. L. (2011). Resin composite - State of the art. Dental Materials, 27(1), 29–38. https://doi.org/10.1016/j.dental.2010.10.020

Fronza, B. M., Rueggeberg, F. A., Braga, R. R., Mogilevych, B., Soares, L. E. S., Martin, A. A., Ambrosano, G., & Giannini, M. (2015). Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dental Materials, 31(12), 1542–1551. https://doi.org/10.1016/j.dental.2015.10.001

Fugolin, A. P., Dobson, A., Huynh, V., Mbiya, W., Navarro, O., Franca, C. M., Logan, M., Merritt, J. L., Ferracane, J. L., & Pfeifer, C. S. (2019). Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity. Acta Biomaterialia, 100, 132–141. https://doi.org/10.1016/j.actbio.2019.09.039

Hahnel, S., Henrich, A., Bürgers, R., Handel, G., & Rosentritt, M. (2010). Investigation of Mechanical Properties of Modern Dental Composites After Artificial Aging for One Year. Operative Dentistry, 35(4), 412–419. https://doi.org/10.2341/09-337-L

Imazato, S., Ma, S., Chen, J., & Xu, H. H. K. (2014). Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dental Materials, 30(1), 97–104. https://doi.org/10.1016/j.dental.2013.06.003

International Organization for Standardization. (2009). INTERNATIONAL STANDARD ISO - 4049 Dentistry — Polymer-based restorative materials. (Vol. 2009).

Jing, Y., Jing, Z., & Ishida, E. H. (2013). Relationship between Porous and Mechanical Properties of Hydrothermally Synthesized Porous Materials from Diatomaceous Earth. Industrial & Engineering Chemistry Research, 52(50), 17865–17870. https://doi.org/10.1021/ie4020205

Liang, J. (2009). Impact fracture toughness and morphology of diatomite-filled polypropylene composites. Polymer Engineering & Science, 49(8), 1603–1607. https://doi.org/10.1002/pen.21397

Losic, D., Mitchell, J. G., & Voelcker, N. H. (2009). Diatomaceous Lessons in Nanotechnology and Advanced Materials. Advanced Materials, 21(29), 2947–2958. https://doi.org/10.1002/adma.200803778

Maher, S., Kumeria, T., Aw, M. S., & Losic, D. (2018). Diatom Silica for Biomedical Applications: Recent Progress and Advances. Advanced Healthcare Materials, 7(19), 1800552. https://doi.org/10.1002/adhm.201800552

Mjör, I. A., Moorhead, J. E., & Dahl, J. E. (2000). Reasons for replacement of restorations in permanent teeth in general dental practice. International Dental Journal, 50(6), 361–366.

Opdam, N. J. M., Bronkhorst, E. M., Loomans, B. a C., & Huysmans, M. C. D. N. J. M. (2010). 12-Year Survival of Composite Vs. Amalgam Restorations. Journal of Dental Research, 89(10), 1063–1067. https://doi.org/10.1177/0022034510376071

Pala, K., Tekçe, N., Tuncer, S., Serim, M. E., & Demirci, M. (2016). Evaluation of the surface hardness, roughness, gloss and color of composites after different finishing/polishing treatments and thermocycling using a multitechnique approach. Dental Materials Journal, 35(2), 278–289. https://doi.org/10.4012/dmj.2015-260

Pieniak, D., Przystupa, K., Walczak, A., Niewczas, A. M., Krzyzak, A., Bartnik, G., Gil, L., & Lonkwic, P. (2019). Hydro-Thermal Fatigue of Polymer Matrix Composite Biomaterials. Materials, 12(22), 3650. https://doi.org/10.3390/ma12223650

Ruggiero, I., Terracciano, M., Martucci, N. M., De Stefano, L., Migliaccio, N., Tatè, R., Rendina, I., Arcari, P., Lamberti, A., & Rea, I. (2014). Diatomite silica nanoparticles for drug delivery. Nanoscale Research Letters, 9(1), 1–7. https://doi.org/10.1186/1556-276X-9-329

Ruivo, M. A., Pacheco, R. R., Sebold, M., & Giannini, M. (2019). Surface roughness and filler particles characterization of resin-based composites. Microscopy Research and Technique, 82(10), 1756–1767. https://doi.org/10.1002/jemt.23342

Sideridou, I. D., & Achilias, D. S. (2005). Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 74(1), 617–626. https://doi.org/10.1002/jbm.b.30252

Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 23, 1819–1829.

Silikas, N., Kavvadia, K., Eliades, G., & Watts, D. (2005). Surface characterization of modern resin composites: a multitechnique approach. American Journal of Dentistry, 18(2), 95–100. http://www.ncbi.nlm.nih.gov/pubmed/15973826

Stoddard, J. W., & Johnson, G. H. (1991). An evaluation of polishing agents for composite resins. The Journal of Prosthetic Dentistry, 65(4), 491–495. https://doi.org/10.1016/0022-3913(91)90286-6

Tamburaci, S., & Tihminlioglu, F. (2017). Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Materials Science and Engineering C, 80, 222–231. https://doi.org/10.1016/j.msec.2017.05.069

Wang, H., Zhu, M., Li, Y., Zhang, Q., & Wang, H. (2011). Mechanical properties of dental resin composites by co- fi lling diatomite and nanosized silica particles. Materials Science & Engineering C, 31(3), 600–605. https://doi.org/10.1016/j.msec.2010.11.023

Downloads

Published

07/12/2022

How to Cite

ARAÚJO, I. J. de S. .; ZANINI, M. M.; GUARDA, M. B.; FRONZA, B. M.; CONSANI, S.; LIMA, I. P. C.; CORRER, A. B. Diatomite filler for resin composites application – A new approach for materials improvement. Research, Society and Development, [S. l.], v. 11, n. 16, p. e268111637738, 2022. DOI: 10.33448/rsd-v11i16.37738. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/37738. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences