Bioenergética mitocondrial y balance oxidativo en modelos in vitro de infecciones por arbovirus: una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v11i16.37749Palabras clave:
Arbovirus; Células; Mitocondrias; Estrés oxidative.Resumen
Introducción: Las infecciones virales afectan el metabolismo oxidativo y pueden afectar los cambios mitocondriales, comprometiendo la homeostasis celular. Objetivos: Evaluar la bioenergética mitocondrial y el balance oxidativo en modelos in vitro de infección por arbovirus. Métodos: La revisión se escribió de acuerdo con PRISMA y se envió a la plataforma Open Science FrameWork con DOI 10.17605/OSF.IO/8ZFSW. Se utilizaron los Descriptores/MeSH (Arbovirus, Arboviruses, Infecciones por Arbovirus, Mitocondrias, Estrés oxidativo y Especies de oxígeno reactivo) en las plataformas: PubMed, SCOPUS, COCHRANE, Lilacs y Web of Science. El análisis de la calidad de los estudios se realizó mediante la herramienta ARRIVE adaptada a CONSORT, seguida de la prueba de concordancia KAPPA, se utilizaron 24 artículos. Resultados: Los resultados muestran cambios morfológicos en las mitocondrias, como hinchazón, fragmentación y aparición de membranas. El estiramiento mitocondrial fue más intenso en las regiones cercanas a las zonas contorneadas, asociado con cambios en los genes de la dinámica mitocondrial. Los cambios en los biomarcadores de estrés oxidativo, las enzimas antioxidantes y la producción de ROS fueron evidentes en la mayoría de los artículos, excepto en aquellos que utilizaron células de origen inmunológico. Conclusión: Los cambios en la bioenergética mitocondrial pueden ayudar al virus en el proceso de replicación, sin embargo, estos cambios pueden resultar en daño celular y estrés oxidativo.
Citas
Azeredo, E. L., Dos Santos, F. B., Barbosa, L. S., Souza, T., Badolato-Corrêa, J., Sánchez-Arcila, J. C., Nunes, P., de-Oliveira-Pinto, L. M., de Filippis, A. M., Dal Fabbro, M., Hoscher Romanholi, I., & Venancio da Cunha, R. (2018). Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned From the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS currents, 10, ecurrents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5. https://doi.org/10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5.
Banerjee, N., & Mukhopadhyay, S. (2018). Oxidative damage markers and inflammatory cytokines are altered in patients suffering with post-chikungunya persisting polyarthralgia. Free radical research, 52(8), 887–895. https://doi.org/10.1080/10715762.2018.1489131.
Beckham, J. D., & Tyler, K. L. (2015). Arbovirus Infections. Continuum (Minneapolis, Minn.), 21(6 Neuroinfectious Disease), 1599–1611. https://doi.org/10.1212/CON.0000000000000240.
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613.
Camini, F. C., da Silva Caetano, C. C., Almeida, L. T., da Costa Guerra, J. F., de Mello Silva, B., de Queiroz Silva, S., de Magalhães, J. C., & de Brito Magalhães, C. L. (2017). Oxidative stress in Mayaro virus infection. Virus research, 236, 1–8. https://doi.org/10.1016/j.virusres.2017.04.017.
Cavalheiro, M. G., Costa, L. S., Campos, H. S., Alves, L. S., Assunção-Miranda, I., & Poian, A. T. (2016). Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. Anais da Academia Brasileira de Ciencias, 88(3), 1485–1499. https://doi.org/10.1590/0001-3765201620150685.
Chatel-Chaix, L., Cortese, M., Romero-Brey, I., Bender, S., Neufeldt, C. J., Fischl, W., Scaturro, P., Schieber, N., Schwab, Y., Fischer, B., Ruggieri, A., & Bartenschlager, R. (2016). Dengue Virus Perturbs Mitochondrial Morphodynamics to Dampen Innate Immune Responses. Cell host & microbe, 20(3), 342–356. https://doi.org/10.1016/j.chom.2016.07.008.
Cherupanakkal, C., Samadanam, D. M., Muthuraman, K. R., Ramesh, S., Venkatesan, A., Balakrishna Pillai, A. K., & Rajendiran, S. (2018). Lipid peroxidation, DNA damage, and apoptosis in dengue fever. IUBMB life, 70(11), 1133–1143. https://doi.org/10.1002/iub.1925.
Datan, E., Roy, S. G., Germain, G., Zali, N., McLean, J. E., Golshan, G., Harbajan, S., Lockshin, R. A., & Zakeri, Z. (2016). Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell death & disease, 7(3), e2127. https://doi.org/10.1038/cddis.2015.409.
Dhanwani, R., Khan, M., Bhaskar, A. S., Singh, R., Patro, I. K., Rao, P. V., & Parida, M. M. (2012). Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus research, 163(2), 563–572. https://doi.org/10.1016/j.virusres.2011.12.009.
Fernandes-Siqueira LO, Zeidler JD, Sousa BG, Ferreira T, Da Poian AT. Anaplerotic Role of Glucose in the Oxidation of Endogenous Fatty Acids during Dengue Virus Infection. mSphere. 2018 Jan 31;3(1):e00458-17. doi: 10.1128/mSphere.00458-17. PMID: 29404419; PMCID: PMC5793041.
Fontaine, K. A., Sanchez, E. L., Camarda, R., & Lagunoff, M. (2015). Dengue virus induces and requires glycolysis for optimal replication. Journal of virology, 89(4), 2358–2366. https://doi.org/10.1128/JVI.02309-14.
Gullberg, R. C., Jordan Steel, J., Moon, S. L., Soltani, E., & Geiss, B. J. (2015). Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology, 475, 219–229. https://doi.org/10.1016/j.virol.2014.10.037.
Keck, F., Brooks-Faulconer, T., Lark, T., Ravishankar, P., Bailey, C., Salvador-Morales, C., & Narayanan, A. (2017). Altered mitochondrial dynamics as a consequence of Venezuelan Equine encephalitis virus infection. Virulence, 8(8), 1849–1866. https://doi.org/10.1080/21505594.2016.1276690.
Keck, F., Khan, D., Roberts, B., Agrawal, N., Bhalla, N., & Narayanan, A. (2018). Mitochondrial-Directed Antioxidant Reduces Microglial-Induced Inflammation in Murine In Vitro Model of TC-83 Infection. Viruses, 10(11), 606. https://doi.org/10.3390/v10110606.
Kim, S. J., Syed, G. H., Khan, M., Chiu, W. W., Sohail, M. A., Gish, R. G., & Siddiqui, A. (2014). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6413–6418. https://doi.org/10.1073/pnas.1321114111.
Lai, J. H., Wang, M. Y., Huang, C. Y., Wu, C. H., Hung, L. F., Yang, C. Y., Ke, P. Y., Luo, S. F., Liu, S. J., & Ho, L. J. (2018). Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO reports, 19(8), e46182. https://doi.org/10.15252/embr.201846182.
Leta, S., Beyene, T. J., De Clercq, E. M., Amenu, K., Kraemer, M., & Revie, C. W. (2018). Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 67, 25–35. https://doi.org/10.1016/j.ijid.2017.11.026.
Lopes, Nayara, Nozawa, Carlos, & Linhares, Rosa Elisa Carvalho. (2014). Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, 5(3), 55-64. https://dx.doi.org/10.5123/s2176-62232014000300007.
Maynard, N. D., Gutschow, M. V., Birch, E. W., & Covert, M. W. (2010). The virus as metabolic engineer. Biotechnology journal, 5(7), 686–694. https://doi.org/10.1002/biot.201000080.
Moher D, Liberati A, Tetzlaff J, Altman DG (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 62(10):1006-12. https://doi.org/10.1016/j.jclinepi.2009.06.005.
Moreno-Altamirano, M. M., Rodríguez-Espinosa, O., Rojas-Espinosa, O., Pliego-Rivero, B., & Sánchez-García, F. J. (2015). Dengue Virus Serotype-2 Interferes with the Formation of Neutrophil Extracellular Traps. Intervirology, 58(4), 250–259. https://doi.org/10.1159/000440723.
Mukherjee, P., Woods, T. A., Moore, R. A., & Peterson, K. E. (2013). Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity, 38(4), 705–716. https://doi.org/10.1016/j.immuni.2013.02.013.
Narayanan, A., Amaya, M., Voss, K., Chung, M., Benedict, A., Sampey, G., Kehn-Hall, K., Luchini, A., Liotta, L., Bailey, C., Kumar, A., Bavari, S., Hakami, R. M., & Kashanchi, F. (2014). Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology, 449, 270–286. https://doi.org/10.1016/j.virol.2013.11.023.
Narayanan, A., Popova, T., Turell, M., Kidd, J., Chertow, J., Popov, S. G., Bailey, C., Kashanchi, F., & Kehn-Hall, K. (2011). Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection. PloS one, 6(5), e20354. https://doi.org/10.1371/journal.pone.0020354.
Olagnier, D., Peri, S., Steel, C., van Montfoort, N., Chiang, C., Beljanski, V., Slifker, M., He, Z., Nichols, C. N., Lin, R., Balachandran, S., & Hiscott, J. (2014). Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS pathogens, 10(12), e1004566. https://doi.org/10.1371/journal.ppat.1004566.
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763.
Powers A. M. (2017). Vaccine and Therapeutic Options To Control Chikungunya Virus. Clinical microbiology reviews, 31(1), e00104-16. https://doi.org/10.1128/CMR.00104-16.
Qi, Y., Li, Y., Zhang, Y., Zhang, L., Wang, Z., Zhang, X., Gui, L., & Huang, J. (2015). IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PloS one, 10(8), e0132743. https://doi.org/10.1371/journal.pone.0132743.
Sheeran FL, Pepe S. Mitochondrial Bioenergetics and Dysfunction in Failing Heart (2017). Adv Exp Med Biol.982:65-80. doi: 10.1007/978-3-319-55330-6_4. PMID: 28551782.
Silva da Costa, L., Pereira da Silva, A. P., Da Poian, A. T., & El-Bacha, T. (2012). Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PloS one, 7(4), e33871. https://doi.org/10.1371/journal.pone.0033871.
Tait, S. W., & Green, D. R. (2012). Mitochondria and cell signalling. Journal of cell science, 125(Pt 4), 807–815. https://doi.org/10.1242/jcs.099234.
Terasaki, K., Won, S., & Makino, S. (2013). The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. Journal of virology, 87(1), 676–682. https://doi.org/10.1128/JVI.02192-12.
Tung, W. H., Tsai, H. W., Lee, I. T., Hsieh, H. L., Chen, W. J., Chen, Y. L., & Yang, C. M. (2010). Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. British journal of pharmacology, 161(7), 1566–1583. https://doi.org/10.1111/j.1476-5381.2010.00982.x.
Valero, N., Mosquera, J., Añez, G., Levy, A., Marcucci, R., & de Mon, M. A. (2013). Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals. PloS one, 8(9), e73221. https://doi.org/10.1371/journal.pone.0073221.
Verma, A. K., Ghosh, S., Pradhan, S., & Basu, A. (2016). Microglial activation induces neuronal death in Chandipura virus infection. Scientific reports, 6, 22544. https://doi.org/10.1038/srep22544.
WORLD HEALTH ORGANIZATION (WHO) A global brief on vector-borne diseases (2014). http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf
Yang, T. C., Lai, C. C., Shiu, S. L., Chuang, P. H., Tzou, B. C., Lin, Y. Y., Tsai, F. J., & Lin, C. W. (2010). Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes and infection, 12(8-9), 643–651. https://doi.org/10.1016/j.micinf.2010.04.007.
Yu, C. Y., Liang, J. J., Li, J. K., Lee, Y. L., Chang, B. L., Su, C. I., Huang, W. J., Lai, M. M., & Lin, Y. L. (2015). Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS pathogens, 11(12), e1005350. https://doi.org/10.1371/journal.ppat.1005350
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Wellington de Almeida Oliveira; Renata Emmanuele Assunção Santos; Gizele Santiago de Moura Silva; Kelli Nogueira Ferraz-Pereira ; Ana Lisa do Vale Gomes; Mariana Pinheiro Fernandes

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.