Selection of F6 soybean lines for Chapadão do Sul
DOI:
https://doi.org/10.33448/rsd-v9i7.3818Keywords:
Glycine max L. Merril; Selection index; Plant breeding; Earliness; Grain yield.Abstract
Soybean is a crop of great economic importance for Brazil, being the main crop of Brazilian agribusiness. For this reason, soybean is exploited in genetic breeding programs, which aim to make available cultivars with high grain yield and adaptability to the different farming regions. The objective of this work was to select F6 soybean lines with high yield, besides favorable traits for the municipality of Chapadão do Sul, in Brazilian Cerrado. The experiments were carried out in the experimental area of the Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul-MS, in the 2017/2018 and 2018/2019 harvests. Forty-eight F6 lines and six commercial cultivars were evaluated in augmented block design, with six replicates for each control. In the first experiment (2017/2018 harvest), the following variables were evaluated: number of days for maturity (cycle), and grain yield (PROD, kg ha-1). In the second experiment (2018/2019 harvest), the variables evaluated were: main stem diameter (DHP, cm), mass of hundred grains (MCG, g), and PROD. The coefficients of variation were less than 10%, indicating higher homogeneity between the data and low random variation. The index ( ) used here has provided agronomic gains in the desired direction for most traits, except DHP. The lines: L4, L16, L18, L23, L25, L30, L31, L32, L40 and L47 stand out as superior genotypes in the selection, with respect to yield in the two years, MCG, and cycle shortening.
References
Azevedo Filho, JAD, Vello, NA & Gomes, RLF. (1998). Estimativas de parâmetros genéticos de populações de soja em solos contrastantes na saturação de alumínio. Bragantia, 57(2), 227-39.
Bárbaro, IM, Cruz Centurion, MAP, Di Mauro, AO, Unêda-Trevisoli, SH & Costa, MM. (2007). Comparação de estratégias de seleção no melhoramento de populações F5 de soja. Revista Ceres, 54(313), 251-62.
Barbosa Filho, MP, Fageria, NK & Zimmermann, FJP. (2005). Atributos de fertilidade do solo e produtividade do feijoeiro e da soja influenciados pela calagem em superfície e incorporada. Ciência e Agrotecnologia, 29(3), 507-14
Bhering, LL. (2017). Rbio: A Tool For Biometric And Statistical Analysis Using The R Platform. Crop Breeding and Applied Biotechnology, 17, 187-90.
Bizeti, HS, Carvalho, CGPD, Souza, JRPD & Destro, D. (2004). Path analysis under multicollinearity in soybean. Brazilian Archives of Biology and Technology, 47(5), 669-76.
Borém, A & Miranda, GV. (2013). Melhoramento de Plantas. 5.ed. Viçosa: UFV.
Conab (2020). National Supply Company. Monitoring the Brazilian grain production: 2019/20 harvest, sixth survey. Brasília: Conab.
Costa, MM, Di Mauro, AO, Unêda-Trevisoli, SH, Arriel, NHC, Bárbaro, IM & Muniz, FRS. (2004). Ganho genético por diferentes critérios de seleção em populações segregantes de soja. Pesquisa Agropecuária Brasileira, 39(11), 1095-102.
Farias Neto, JT & Vello, NA. (2001). Avaliação de progênies F4:3 e F5:3 e estimativas de parâmetros genéticos com ênfase para porcentagem de óleo, produtividade de grãos e óleo em soja. Ciência e Agrotecnologia, 25, 812-20.
Hirakuri, MH. (2016). Impactos econômicos de estresses na produção de soja da safra 2015/16. Londrina: Embrapa Soja, Circular Técnica 125.
Pimentel, AJB, Ribeiro, G, Souza, MAD, Moura, LM, Assis, JCD & Machado, JC. (2013). Comparação de métodos de seleção de genitores e populações segregantes aplicados ao melhoramento de trigo. Bragantia, 72(2), 113-21.
Peel, MC, Finlayson, BL & McMahon, TA. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–44.
Resende, MDV. (2002). Software Selegen–REML/BLUP. Colombo: Embrapa Florestas.
Sediyama, T. (2015). Melhoramento Genético da Soja. Piracicaba: Editora Mecenas.
Sediyama, T., Teixeira, R. C., Reis, M. S (1999). Melhoramento da soja. In: Borém, A. (Ed). Melhoramento de espécies cultivadas. Viçosa: UFV.
Silva, F.C.S., Sediyama, T., Oliveira, R.C.T., Borém, A., Silva, F.L., Bezerra, A.R.G., Silva, A.F. (2017). Importância econômica e evolução do melhoramento. In: Silva, F.L., Borém, A., Sediyama, T., Ludke, W. (Eds). Melhoramento da Soja. Viçosa: UFV.
SojaMaps. Monitoramento de áreas de soja por meio de imagens de satélite. Geotecnologia Aplicada em Agricultura e Floresta, Universidade do Estado de Mato Grosso. Retrieved January 21 from http://pesquisa.unemat.br/gaaf/sojamaps.
Shigihara, D & Hamawaki, OT. (2005). Seleção de Genótipos para Juvenilidade em Progênies de soja (Glycine max (L.) Merrill). Bioscience Journal, 1, 1-26.
Torres, FE, Silva, ECD & Teodoro, PE. (2014). Desempenho de genótipos de soja nas condições edafoclimáticas do ecótono Cerrado-Pantanal. Interações, 15(1), 71-8.
USDA. 2019. World Agricultural Production. United States Department of Agriculture-USDA, Circular Series.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.