Evaluation of the antifungal activity of propolis extracts from stingless bees on phytopathogenic fungi
DOI:
https://doi.org/10.33448/rsd-v11i16.38445Keywords:
Natural antifungals; Phenolic compounds; Total flavonoids; Meliponini; Propolis.Abstract
The bees of the Meliponini tribe, known as stingless bees (SB), elaborate a distinct type of propolis, whose application potential is largely unexplored. Currently, there is some knowledge of the pharmacological activities of the propolis from Apis mellifera, however, little is known about the diversity and antimicrobial activity of Meliponini propolis, especially in relation to pathogens of agricultural importance. This study aimed to investigate the antimicrobial activity of the alcoholic extract of propolis from T. clavipes (Borá), S. bipunctata (Tubuna), and T. angustula (Jataí), comparing with the ethanolic extract from A. mellifera propolis. The autoclaved and non-autoclaved extracts were evaluated at the concentrations of zero, 1.6 %; 3.2 %; 6.4 %, and 12.0 % v/v. Fungal development was determined by measuring the mycelial diameter up to the fourteenth day of inoculation, with five replicates; the growth inhibition was calculated relative to the control. According to the results, the highest concentration of phenolic compounds and flavonoids was present in the ethanolic extract of A. mellifera propolis when compared to the SB extracts. The results indicated an inhibitory effect on the growth of the phytopathogens Colletotrichum gloeosporioides, Fusarium sp., Botryosphaeria sp., and Botrytis sp., mainly from 6.4 % and 12.0 % v/v when evaluated in the non-autoclaved medium, followed by the autoclaved medium. The fungus Botrytis sp. was the phytopathogen that suffered greater inhibition from 3.2 mL∙L-1, with the T. angustula propolis extract. The obtained results demonstrate that the alcoholic extracts of propolis from SB have the potential to control phytopathogenic fungi of agricultural interest.
References
Ali, A. M., & Kunugi, H. (2020). Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 9, 1362.
Anjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., Bashir, M. A., Tahir, M., Ansari, M. J., Ghramh, H. A., Adgaba, N., & Dash, C. K. (2019). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26, 1695-1703.
Araujo, M. J. A. M., Buffalo, M. C., Conti, B. J., Fernandes Júnior, A., Trusheva, B., Bankova, V., & Sforcin, J. M. (2015). The chemical composition and pharmacological activities of geopropolis produced by Melipona fasciculata Smith in northeast Brazil. Journal of Molecular Pathophysiology, 4(1), 12-20.
Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology, 100(1-2), 114-117.
Bankova, V., Popova, M., & Trusheva, B. (2014). Propolis compounds volatile: chemical diversity and biological activity: A review. Chemistry Central Journal, 8, 1-8.
Batista, M. C. A., Abreu, B. V. B., Dutra, R. P., Cunha, M. S., Amaral, F. M. M., Torres, L. M. B., & Ribeiro, M. N. S. (2016). Chemical composition and antioxidant activity of geopropolis produced by Melipona fasciculata (Meliponinae) in flooded fields and cerrado areas of Maranhão State, northeastern Brazil. Acta Amazônica, 46(3), 315-322.
Campelo, M. C. S., Freire, D. A. C., Abrantes, M. R., Souza, E. S., & Silva, J. B. A. (2015). Antimicrobial potential of propolis and wax from different species of stingless bees. Acta Veterinaria Brasilica, 9(4), 397-400. https://doi.org/10.21708/avb.2015.9.4.5406
Cardozo, D. V., Mokochinski, J. B., Schineider, C. M., Sawaya, A. C. H. F., Caetano, I. K., Felsner, M. L., & Torres, Y. R. (2015). Chemical variability of geopropolis produced by stingless bees Jataí, Mandaçaia and Mandurí. Revista Virtual de Química, 7(6), 2457-2474.
Correa, J. L., Veiga, F. F., Pitchers, I. C., Costa, M. I., Castilho, P. F., Oliveira, K. M. P., Rosseto, H. C., Bruschi, M. L., Svidzinski, T. I. E., & Negri, M. (2020). Propolis extract has bioactivity on the wall and cell membrane of Candida albicans. Journal of Ethnopharmacology, 256, 112791.
Cunha, M. G., Franchin, M., Galvão, L., Ruiz, A. L. T. S., Carvalho, J. E., Ikegaki, M., Alencar, S. M., Koo, H., & Rosalen, P. L. (2013). Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complementary and Alternative Medicine, 13, 23. https://doi.org/10.1186/1472-6882-13-23
Cunha, M. G., Rosalen, P. L., Franchin, M., Alencar, S. M., Ikegaki, M., Ransom, T., & Beutler, J. A. (2015). Antiproliferative constituents of geopropolis from the bee Melipona scutellaris. Planta Medica, 82(3), 190-194.
Cunha, M. S. (2017). Chemical composition and antitumor activity of Melipona fasciculata Smith [Doctoral dissertation, Federal University of Maranhão]. Federal University of Maranhão Repository. https://tedebc.ufma.br/jspui/handle/tede/tede/2456
Curifuta, M., Vidal, J., Sanchez-Venegas, J., Contreras, A., Salazar, L. A., & Alvear, M. (2012). The in vitro antifungal evaluation of a commercial extract of Chilean propolis against six fungi of agricultural importance. Ciencia e Investigación Agraria, 39, 347-359. https://doi.org/10.4067/S0718-16202012000200011
D'Auria, F. D., Tecca, M., Scazzocchio, F., Renzini, V., & Strippoli, V. (2003). Effect of propolis on virulence factors of Candida albicans. Journal of Chemotherapy, 15, 454-460.
Davari, M., & Ezazi, R. (2022). Mycelial inhibitory effects of antagonistic fungi, plant essential oils and propolis against five phytopathogenic Fusarium species. Archives of Microbiology, 204, 480. https://doi.org/10.1007/s00203-022-03102-6
Dutra, R. P. (2012). Bioprospection of geopropolis from Melipona fasciculata Smith as an input in the generation of leishmanicidal products [Doctoral Dissertation, Federal University of Maranhão]. Federal University of Maranhão Repository. https://tedebc.ufma.br/jspui/handle/tede/tede/67
Fernández-Calderón, M. C., Navarro-Perez, M. L., Blanco-Roca, M. T., Gomez-Navia. Ç., Pérez-Giraldo, C., & Vadillo-Rodríguez, V. (2020). Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids. Molecules, 25, 3318.
Ferreira, B. L., Gonzaga, L. V., Vitali, L., Micke, G. A., Baggio, D., Oliveira, A. C., & Fett, R. C. (2020). Dataset about Southern-Brazilian geopropolis: Physical and chemical perspectives. Data In Brief, 29, 1051093.
Ferreira, J. M., Negrib, G., Salatinob, M. L. F., Messagec , D., & Salatino, A. (2022). Chemical profile and antioxidant activity of geopropolis from Melipona subnitida collected inside and outside the nest. Química Nova, XY(00), 1-8. https://doi.org/10.21577/0100-4042.20170928
Gama, E. V. S., Silva, F., Santos, I., Malheiro, R., Soares, A. C. F., Pereira, J. A., & Armond, C. (2015). Homeopathic drugs to control red rot disease in sisal plants. Agronomy for Sustainable Development, 35(2), 649-656.
Gucwa, K., Kusznierewicz, B., Milewski, S., Van Dijck, P., & Szweda, P. (2018). Antifungal activity and synergism with azoles of Polish propolis. Pathogens, 7, 56.
Kalogeropoulos, N., Konteles, S. J., Troullidou, E., Mourtzinos, I., & Karathanos, V. T. (2009). Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chemistry, 116, 452-461. https://doi.org/10.1016/j.foodchem.2009.02.060
Lavinas, F. C., Macedo, E. H. B. C., Sá, G. B. L., Amaral, A. C. F., Silva, J. R. A., Vieira, B. A., Sundays, T. F. S., Red, A. B., Carneiro, C. S., & Rodrigues, I. A. (2019). Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Brazilian Journal of Pharmacognosy, 29, 389-399.
Letullier, C., Manduchet, A., Dlalah, N., Hugou, M., George, S., Sforcin, J. M., & Cardinault, N. (2020). Comparison of the antibacterial efficiency of propolis samples from different botanical and geographic origins with and without standardization. Journal of Apicultural Research, 59(1), 19-24.
Maqbool, M., Ali, A., Ramachandran, S., Smith, D. R., & Alderson, P. G. (2010). Control of postharvest anthracnose of banana using a new edible composite coating. Crop Protection, 29(10), 1136-1141.
Matic, P., Sabljic, M., & Jakobek, L. (2017). Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. Journal of AOAC International, v. 100(6), 1795-1803.
Melo, A. A. M., Matsuda, A. H., Freitas, A. S., Barth, O. M., & Almeida-Muradian, L. B. (2014). Antioxidant capacity of propolis. Tropical Agricultural Research, 44(3), 341-348.
Oliveira, J. S. B., Schwan-Estrada, K. R. F., Bonato, C. M., & Carneiro, S. M. T. P. G. (2017). Homeopatias de óleos essenciais sobre a germinação de esporos e indução de fitoalexinas. Revista Ciência Agronômica, 48(1), 208-215.
Ozan, F., Sumer, Z., Polat, Z. A., Er, K., Ozan, U., & Deger, O. (2007). Effect of mouthrinse containing propolis on oral microorganisms and human gingival fibroblasts. European Journal of Dentistry, 1, 195–201, 2007. https://doi.org/10.1055/s-0039-1698339
Pasupuleti, V. R., Sammugam, L., Ramesh, N., & Gan, S. H. (2017). Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity, 2017, 1-21.
Pereira, G. A., Arruda, H. S., & Pastore, G. M. (2018). Modification and validation of Folin-Ciocalteu assay for faster and safer analysis of total phenolics content in food samples. Brazilian Journal of Food Research, 9(1), 125-140.
Pietta, P. G., Gardana, C., & Pietta, A. M. (2002). Analytical methods for quality control of propolis. Phytotherapy, 73, S7–S20.
Pinto, L. M. A., Prado, N. R. T., & Carvalho, L. B. (2011). Propriedades, usos e aplicações da própolis. Revista Eletrônica de Farmácia, 8(3), 76–100. https://doi.org/10.5216/ref.v8i3.15805
Quiroga, E. N., Sampietro, D. A., Soberon, J. R., Sgariglia, M. A., & Vattuone, M. A. (2006). Propolis from the northwest of Argentina as a source of antifungal principles. Journal of Applied Microbiology, 101, 103-110. https://doi.org/10.1111/j.1365-2672.2006.02904.x
Sforcin, J. M., Fernandes Junior, A., Lopez, C. A. M., Bankova, V., & Funari, S. R. C. (2000). Seasonal effect on Brazilian propolis antibacterial activity. Journal of Ethnopharmacology, 73, 243-249.
Silva, E. C. C., Muniz, M. P., Nunomura, R. C. S., Nunomura, S. M., & Zilse, G. A. C. (2013). Phenolic constituents and antioxidant activity of geopropolis from two species of Amazonian stingless bees. Química Nova, 36(5), 628-633.
Silva, F. R. G., Matias, T. M. S., Souza, L. I. O., Matos-Rocha, T. J., Fonseca, S. A., Mousinho, K. C., & Santos, A. F. (2019). Phytochemical screening and in vitro antibacterial, antifungal, antioxidant and antitumor activities of the red propolis Alagoas. Brazilian Journal of Biology, 79, 452-459.
Silva, J. B., Costa, K. M. F. M., Coelho, W. A. C., Paiva, K. A. R., Costa, G. A. V., Salatino, A., Freitas, C. I. A., & Batista, J. S. (2016). Quantification of total phenols, flavonoids and pharmacological activities of geopropolis from Plebeia aff. flavocincta from Rio Grande do Norte. Pesquisa Veterinária Brasileira, 36(9), 874-880. http://dx.doi.org/10.1590/s0100-736x2016000900014
Silva-Carvalho, R., Baltazar, F., & Almeida-Aguiar, C. (2015). Propolis: a complex natural product with a plethora of biological activities that can be explored for drug development. Evidence-Based Complementary and Alternative Medicine, 2015, 206439.
Sousa, J. P. L. M., Saucer L. O., Santos, R. F., Prudêncio, E. R., D'Olive, I. R. A., Sant'Ana, L., Ferreira, D. A. S., & Castro, R. N. (2019). Chemical and Antimicrobial Potential Study of Brazilian Propolis Produced by Different Species of Bees. Revista Virtual de Química, 11, 1480-1497.
Tran, T. D., Ogbourne, S. M., Brooks, P. R., Sanchez-Cruz, N., Medina-Franco, J. L., & Quinn, R. J. (2020). Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. International Journal of Molecular Sciences, 21, 4988.
Viuda-Martos, M., Ruiz-Navajas, Y., Fernandez-Lopez, J., & Pérez-Álvarez, J. A. (2008). Functional properties of honey, propolis, and royal jelly. Journal of Food Science, 73, R117– R124.
Yang, S. Z., Peng, L. T., Su, X. J., Chen, F., Cheng, Y. J., Fan, G., & Pan, S. Y. (2011). Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium italicum. Food Chemistry, 127, 210-215. https://doi.org/10.1016/j.foodchem.2010.12.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Clarice Rech Costantin; Helena Gil de Oliveira; Luiza San Martins Roese; Márcia Regina Pancera; Wendel Paulo Silvestre; Gustavo Rubbo Siqueira; Nadilson Roberto Ferreira; Valdirene Camatti Sartori
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.