Preparações de frutas Tribulus terrestris afetam os perfis químicos de HPLC e as atividades antioxidantes, lipoxigenase e inibidoras de α-glucosidase

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.38751

Keywords:

Zygophyllaceae; Herbal extracts; Total phenolic contents; HPLC.

Abstract

Tribulus terrestris fruit has been used as a traditional and popular medicine for the prevention and treatment of several diseases, including sexual dysfunction, atherosclerosis and hypertension. The aim of this study was to evaluate the antioxidant, lipoxygenase and α-glucosidase inhibitory activities of an ethanol extract from Brazilian T. terrestris and its fractions sequentially partitioned into n-hexane, dichloromethane, ethyl acetate and n-butanol. The antioxidant capacities were determined by DPPH and ABTS scavenging free radicals, chelating metal ions, reducing power and total antioxidant activity by using phosphomolybdenum. High-performance liquid chromatography with diode array detection (HPLC-DAD) fingerprint analysis and quantitation of total phenolics were performed on the samples. The dichloromethane fraction showed the most complex HPLC-DAD chemical profile. The ethyl acetate and butanol fractions revealed the best phenolic compound and flavonoid recovery from T. terrestris. Concerning antioxidant activity, the ethyl acetate fraction presented better capacity for scavenging DPPH, ABTS and hydroxyl radicals, reductive power, total antioxidant capacity (TAC) and α-glucosidase inhibitory activity than the other fractions. These results correlated closely with the levels of phenolic compounds and flavonoids. The hexane fraction showed the best metal chelating power and lipoxygenase inhibitory activity. The anti-diabetic and anti-inflammatory potential of Brazilian Tribulus terrestris depend on the method of preparation.

References

Aazza, S., Lyoussi, B., & Miguel, M. G. (2011). Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 16(9), 7672-7690.

Abdali-Mashhadi, A.-R., Direkvand-Moghadam, F., jalali, M., Albobaji, M., Direkvand-Moghadam, A., & Delpisheh, A. (2016). The measurement of the quercetin of different parts of Tribulus terrestris by HPLC. Future Natural Products, 2(1), 21-26.

Ahmed, D., Khan, M. M., & Saeed, R. (2015). Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants, 4(2), 394-409.

Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152.

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42.

Asadmobini, A., Bakhtiari, M., Khaleghi, S., Esmaeili, F., & Mostafaei, A. (2017). The effect of Tribulus terrestris extract on motility and viability of human sperms after cryopreservation. Cryobiology, 75, 154-159.

Asikin, Y., Takahashi, M., Mizu, M., Takara, K., Oku, H., & Wada, K. (2016). DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses. Journal of the Science of Food and Agriculture, 96(4), 1209-1215.

Basaiyye, S. S., Naoghare, P. K., Kanojiya, S., Bafana, A., Arrigo, P., Krishnamurthi, K., & Sivanesan, S. (2018). Molecular mechanism of apoptosis induction in Jurkat E6-1 cells by Tribulus terrestris alkaloids extract. Journal of Traditional and Complementary Medicine, 8(3), 410-419.

Borran, M., Minaiyan, M., Zolfaghari, B., & Mahzouni, P. (2017). Protective effect of Tribulus terrestris fruit extract on cerulein-induced acute pancreatitis in mice. Avicenna Journal of Phytomedicine (AJP), 7(3), 250-260.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.

Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of food and drug analysis, 10(3), 3.

Choi, C.-I., Eom, H. J., & Kim, K. H. (2016). Antioxidant and α-glucosidase inhibitory phenolic constituents of Lactuca indica L. Russ. J. Bioorganic Chem. , 42(3), 310-315.

Dakshayini, P., & Mahaboob Basha, P. (2018). Tribulus terrestris fruit extract improves antioxidant defense in female reproductive tract: A comprehensive study in diabetic rats. J. Innov. Pharm. Biol. Sci., 5(2), 101-107.

De Combarieu, E., Fuzzati, N., Lovati, M., & Mercalli, E. (2003). Furostanol saponins from Tribulus terrestris. Fitoterapia, 74(6), 583-591.

Dinchev, D., Janda, B., Evstatieva, L., Oleszek, W., Aslani, M. R., & Kostova, I. (2008). Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry, 69(1), 176-186.

Dobrian, A. D., Morris, M. A., Taylor-Fishwick, D. A., Holman, T. R., Imai, Y., Mirmira, R. G., & Nadler, J. L. (2019). Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacology & Therapeutics, 195, 100-110.

Domingueti, C. P., Dusse, L. M. S. A., Carvalho, M. d. G., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and its Complications, 30(4), 738-745.

Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.-M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Journal of Agricultural and Food Chemistry, 57(5), 1768-1774.

Dwivedi, D., & Sengar, N. (2018). Investigation of phytochemical constituents from Tribulus terrestris roots, leaves and fruits. Journal of Chemistry and Chemical Sciences, 8(1), 55-58.

Egnell, M., Fassier, P., Lécuyer, L., Gonzalez, R., Zelek, L., Vasson, M.-P., Hercberg, S., Latino-Martel, P., Galan, P., Druesne-Pecollo, N., Deschasaux, M., & Touvier, M. (2017). Antioxidant intake from diet and supplements and risk of digestive cancers in middle-aged adults: results from the prospective nutrinet-santé cohort. British Journal of Nutrition, 118(7), 541-549.

El-Shaibany, A., Molham, A.-H., Al-Tahami, B., & Al-Massarani, S. (2015). Anti-hyperglycaemic activity of Tribulus terrestris L aerial part extract in glucose-loaded normal rabbits. Trop. J. Pharm. Res., 14(12), 2263-2268.

El‐Guendouz, S., Aazza, S., Lyoussi, B., Antunes, M. D., Faleiro, M. L., & Miguel, M. G. (2016). Anti‐acetylcholinesterase, antidiabetic, anti‐inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci., 51(8), 1762-1773.

Ercan, P., & El, S. N. (2016). Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chemistry, 205, 163-169.

Ernawati, T., Radji, M., Hanafi, M., Mun’im, A., & Yanuar, A. (2017). Cinnamic acid derivatives as α-glucosidase inhibitor agents [cinnamic acid derivative; α-glucosidase inhibitor; antidiabetic; synthesis; natural products]. Indones. J. Chem., 17(1), 10.

Frum, Y., & Viljoen, A. M. (2006). In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases. Skin Pharmacol. Physiol., 19(6), 329-335.

Gardner, H. W. (1995). Biological roles and biochemistry of the lipoxygenase pathway. HortScience, 30(2), 197-205.

Ghanbari, A., Moradi, M., Raoofi, A., Falahi, M., & Seydi, S. (2016). Tribulus terrestris hydroalcoholic extract administration effects on reproductive parameters and serum level of glucose in diabetic male rats. International Journal of Morphology, 34(2).

Hammoda, H. M., Ghazy, N. M., Harraz, F. M., Radwan, M. M., ElSohly, M. A., & Abdallah, I. I. (2013). Chemical constituents from Tribulus terrestris and screening of their antioxidant activity. Phytochemistry, 92, 153-159.

Hong, S. S., Choi, Y.-H., Jeong, W., Kwon, J. G., Kim, J. K., Seo, C., Ahn, E.-K., Lee, H. H., Ko, H.-J., Seo, D.-W., & Oh, J. S. (2013). Two new furostanol glycosides from the fruits of Tribulus terrestris. Tetrahedron Lett., 54(30), 3967-3970.

Ivanova, A., Lazarova, I., Mechkarova, P., & Tchorbanov, B. (2010). HPLC method for screening of steroidal saponins and rutin as biologically active compounds in Tribulus Terrestris L. Biotechnol. Biotechnol. Equip., 24(sup1), 129-133.

Kang, S. Y., Jung, H. W., Nam, J. H., Kim, W. K., Kang, J. S., Kim, Y. H., Cho, C. W., Cho, C. W., Park, Y. K., & Bae, H. S. (2017). Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone-induced atopic dermatitis through regulation of calcium channels, orai-1 and TRPV3, and mast cell activation. Evid. Based Complementary Altern. Med., 2017, 8312946.

Keshtmand, Z., Ghanbari, A., Khazaei, M., & Rabzia, A. (2015). Protective effect of Tribulus terrestris hydroalcoholic extract against cisplatin-induced apoptosis on testis in mice. Int. J. Morphol., 33(1).

Khairwal, V., & Kumar, M. (2013). Lead acetate induced oxidative stress and its possible reversal by Tribulus terrestris root extract in testes of Swiss albino mice. J. Environ. Sci. Toxicol. Food Technol., 6(3), 79-85.

Khatri, S., & Chhillar, A. K. (2015). Evaluation of in vitro free radical scavenging activity of Tribulus terrestris. Int. J. Basic Appl. Biol.

Kim, H. S., Lee, J. W., Jang, H., Le, T. P. L., Kim, J. G., Lee, M. S., Hong, J. T., Lee, M. K., & Hwang, B. Y. (2018). Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Arch. Pharm. Res., 41(2), 192-195.

Kostova, I., Dinchev, D., Rentsch, G. H., Dimitrov, V., & Ivanova, A. (2002). Two new sulfated furostanol saponins from Tribulus terrestris. Z. Naturforsch. C. J. Biosci., 57(1-2), 33-38.

Kumari, M., Kumar, P., & Singh, P. (2015). Safety evaluation of Tribulus terrestris on the male reproductive health of laboratory mouse. Int. J. Pharm. Phytopharm. Research, 4(5), 281-287.

Kunchandy, E., & Rao, M. N. A. (1990). Oxygen radical scavenging activity of curcumin. Int. J. Pharm. , 58(3), 237-240.

Lamba, H., Bhargava, C., Thakur, M., & Bhargava, S. (2011). α-glucosidase and aldose reductase inhibitory activity in vitro and anti-diabetic activity in vivo of Tribulus terrestris L. (Dunal). Int. J. Pharm. Pharm., 3, 270–272.

Lee, H. H., Ahn, E. K., Hong, S. S., & Oh, J. S. (2017). Anti-inflammatory effect of tribulusamide D isolated from Tribulus terrestris in lipopolysaccharide-stimulated RAW264.7 macrophages. Mol. Med. Rep., 16(4), 4421-4428.

Lokhande, K., Kulkarni, C., Shinkar, M., Jadhav, S., & Salunkhe, S. (2014). Evaluation of antioxidant potential of Indian wild leafy vegetable Tribulus terrestris. Int. J. Adv. Pharm. Biol. Chem., 3, 2277-4688.

Nebieridze, V. G., Skhirtladze, A. V., Kemertelidze, E. P., & Ganzera, M. (2018). Megastigmane glycosides from leaves of Tribulus terrestris. Chem. Nat. Compd., 54(1), 63-65.

Nelson, M. J., & Seitz, S. P. (1994). The structure and function of lipoxygenase. Curr. Opin. Struct. Biol., 4(6), 878-884.

Oliveira, N. N. P. M., Félix, M. A. R., Pereira, T. C. S., Rocha, L. G. P., Miranda, J. R., Zangeronimo, M. G., Pinto, J. E. B. P., Bertolucci, S. K. V., & Sousa, R. V. d. (2015). Sperm quality and testicular histomorphometry of wistar rats supplemented with extract and fractions of fruit of Tribulus terrestris L. Braz. Arch. Biol. Technol., 58, 891-897.

Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.

Pappachan, J. M., Fernandez, C. J., & Chacko, E. C. (2019). Diabesity and antidiabetic drugs. Molecular Aspects of Medicine, 66, 3-12.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341.

Rajendar, B., Bharavi, K., Rao, G., Kishore, P., Kumar, P. R., Kumar, C. S., & Patel, T. P. (2011). Protective effect of an aphrodisiac herb Tribulus terrestris Linn on cadmium-induced testicular damage. Indian journal of pharmacology, 43(5), 568.

Rajendrabhai, V. D. (2017). Detection of phytochemical and pharmacological properties of crude extracts of Tribulus terrestris collected from tribal regions of Baglan (MS), India. Int J Pharmacognosy Phytochem Res, 9(4), 508-511.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.

Samani, N. B., Jokar, A., Soveid, M., Heydari, M., & Mosavat, S. H. (2016). Efficacy of the hydroalcoholic extract of Tribulus terrestris on the serum glucose and lipid Profile of women with diabetes mellitus: a double-blind randomized placebo-controlled clinical trial. Journal of Evidence-Based Complementary & Alternative Medicine, 21(4), NP91-NP97.

Sannigrahi, S., Mazuder, U. K., Pal, D. K., Parida, S., & Jain, S. (2010). Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian journal of pharmaceutical research: IJPR, 9(1), 75.

Sarma, A. D., Mallick, A. R., & Ghosh, A. (2010). Free radicals and their role in different clinical conditions: an overview. International Journal of Pharma Sciences and Research, 1(3), 185-192.

Semerdjieva, I. B., & Zheljazkov, V. D. (2019). Chemical constituents, biological properties, and uses of Tribulus terrestris: a review. Natural Product Communications, 14(8), 1934578X19868394.

Shishovska, M., Arsova-Sarafinovska, Z., & Memeti, S. (2015). A simple method for determination of protodioscin in Tribulus terrestris L. and pharmaceuticals by high-performance liquid chromatography using diode-array detection. J. Chem. Eng. Res. Updates, 2, 12-21.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 16(3), 144-158.

Song, Y. H., Kim, D. W., Curtis-Long, M. J., Park, C., Son, M., Kim, J. Y., Yuk, H. J., Lee, K. W., & Park, K. H. (2016). Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem., 114, 201-208.

Wang, B.-J., Lien, Y.-H., & Yu, Z.-R. (2004). Supercritical fluid extractive fractionation – study of the antioxidant activities of propolis. Food Chemistry, 86(2), 237-243.

Wu, T.-S., Shi, L.-S., & Kuo, S.-C. (1999). Alkaloids and other constituents from Tribulus terrestris. Phytochemistry, 50(8), 1411-1415.

Zheleva-Dimitrova, D. Z., Obreshkova, D., & Nedialkov, P. T. (2012). Antioxidant activity of Tribulus terrestris - a natural product in infertility therapy.

Zheng, W., Wang, F., Zhao, Y., Sun, X., Kang, L., Fan, Z., Qiao, L., Yan, R., Liu, S., & Ma, B. (2017). Rapid characterization of constituents in Tribulus terrestris from different habitats by UHPLC/Q-TOF MS. J. Am. Soc. Mass Spectrom., 28(11), 2302-2318.

Zhu, W., Du, Y., Meng, H., Dong, Y., & Li, L. (2017). A review of traditional pharmacological uses, phytochemistry, and pharmacological activities of Tribulus terrestris. Chem. Cent. J., 11(1), 60.

Published

19/12/2022

How to Cite

OLIVEIRA, N. N. P. M. .; PEREIRA, A. C. .; AAZZA, S. .; GERMANO, C. M. .; ASSIS, R. M. A. de .; MENDONÇA, S. C. .; CARVALHO, A. A. de .; PINTO, J. E. B. P. .; BERTOLUCCI, S. K. V. . Preparações de frutas Tribulus terrestris afetam os perfis químicos de HPLC e as atividades antioxidantes, lipoxigenase e inibidoras de α-glucosidase. Research, Society and Development, [S. l.], v. 11, n. 17, p. e17111738751, 2022. DOI: 10.33448/rsd-v11i17.38751. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/38751. Acesso em: 24 nov. 2024.

Issue

Section

Agrarian and Biological Sciences