Protective effect of Amazonian Himatanthus sucuuba extracts in Drosophila melanogaster exposed to Paraquat
DOI:
https://doi.org/10.33448/rsd-v11i17.38931Keywords:
Drosophila melanogaster; Neuroprotection; Antioxidants; Amazonian plants.Abstract
The Amazon rainforest is an essential source of scientific knowledge, so several research groups seek to understand the role of Amazonian compounds in diseases. Among the vast flora, Himatanthus sucuuba has a variety of therapeutic purposes and is used for the first time in the neuroprotection induced by Paraquat (PQ) in Drosophila melanogaster. In our study, we carried out phytochemical assays with the hydroalcoholic extract of H. sucuuba, revealing qualitatively classes of secondary metabolites and quantitatively total phenols (43.33 mg GAE/g extract-1), total flavonoids (44.09 mg GAE/G Extract- 1) and antioxidant activity via DPPH and ABTS. Furthermore, exposure of adult D. melanogaster (wild strain, Canton Special) to PQ for 15 days caused increased oxidative stress, as evidenced by elevated levels of protein carbonyls, lactate, and acetylcholinesterase and citrate synthase activities. However, the diet supplemented with H. sucuuba (0.1 mg/mL) for 15 days prevented damage from oxidative stress triggered by PQ. Our study aims to demonstrate the protective effect of H. sucuuba extract on D. melanogaster exposed to PQ. Based on our results, we suggest that extracts from the bark of H. sucuuba can prevent or minimize human diseases caused by oxidative stress. Therefore, further studies on the mechanisms involved in such activities will be necessary.
References
Abeysinghe, A. A. D. T., Deshapriya, R. D. U. S., & Udawatte, C. (2020). Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life sciences, 256, 117996. https://doi.org/10.1016/j.lfs.2020.117996
Aguirre-Hernández, E., Martínez, A. L., González-Trujano, M. E., Moreno, J., Vibrans, H., & Soto-Hernández, M. (2007). Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. Journal of ethnopharmacology, 109(1), 140–145. https://doi.org/10.1016/j.jep.2006.07.017
Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell metabolism, 14(6), 724–738. https://doi.org/10.1016/j.cmet.2011.08.016
Bhadone, B. S., Patil, M. P., Maheshwari, V. L., & Patil, R. H. (2018). Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytotherapy Research: PTR, 32(7), 1181–1210. https://doi.org/10.1002/ptr.6066
Bradford, M. M. A Rapid and Sensitive Method for a Quantitation of Microgram Quantities of Proteins Utilizing the Principle of Protein – Dye Binding. Analytical Biochemistry, 72 (1976) 248-254. https://doi.org/ 10.1006/ abio.197 6.9999
Cao, C., Li, X., Qin, L., Luo, J., Zhang, M., Ou, Z., & Wang, K. (2018). High Selenium Yeast mitigates aluminum-induced cerebral inflammation by increasing oxidative stress and blocking NO production. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine, 31(5), 835–843. https://doi.org/10.1007/s10534-018-0128-0
Carmo, M. K. B., Figueiredo, M. O. V., Souza, J. M.; Souza, A. O., Lima, C. A. C. (2021). Neuroprotective action of aspirin on Paraquat intoxication in on Drosophila. Research, Society and Development, 10(4): e30710414179. https://doi.org/10.33448/rsd-v10i4.14179
Castillo-Bautista, C. M., Torres-Tapia, L. W., Rangel-Méndez, J. A., Peraza-Sánchez, S. R., Cortés, D., Velasco, I., & Moo-Puc, R. E. (2019). Neuroprotective effect of Mayan medicinal plant extracts against glutamate-induced toxicity. Journal of natural medicines, 73(3), 672–678. https://doi.org/10.1007/s11418-019-01284-w
Chang, C.C., Yang, M.H., Wen, H.M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis: Vol. 10: Iss. 3, Article 3. https://doi.org/10.38212/2224-6614.2748
Costa, S. L., Silva, V. D., Dos Santos Souza, C., Santos, C. C., Paris, I., Muñoz, P., & Segura-Aguilar, J. (2016). Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity research, 30(1), 41–52. https://doi.org/10.1007/s12640-016-9600-1
Cui, X., Lin, Q., & Liang, Y. (2020). Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress. Frontiers in aging neuroscience, 12, 209. https://doi.org/10.3389/fnagi.2020.00209
Da Silva, M. L., Stehmann, J. R., Serafim, M. S. M., Vale, V. V., Gontijo, D. C., Brandão, G. C., Kroon, E. G., & de Oliveira, A. B. (2021). Himatanthus bracteatus stem extracts present anti-flavivirus activity while an isolated sesquiterpene glucoside present only anti-Zika virus activity in vitro. Natural product research, 35(18), 3161–3165. https://doi.org/10.1080/14786419.2019.1690487
Dawson, T. M., Golde, T. E., & Lagier-Tourenne, C. (2018). Animal models of neurodegenerative diseases. Nature neuroscience, 21(10), 1370–1379. https://doi.org/10.1038/s41593-018-0236-8
Depetris-Chauvin, A., Galagovsky, D., Chevalier, C. (2017). Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci Rep 7, 14230. https://doi.org/10.1038/s41598-017-14589-1
Ellman, G. L., Courtney, K. D., Andres JR, V., & Featherstone, R. M. A new and rapid colorimetric deter- mination of acethylcholinesterase activity. Biochemical Pharmacology, 7:88–95, 1961. https://doi.org/10.1016/0006-2952(61)90145-9
Ezeonu, S. & Ejikeme, C. (2016). Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. 2016. 9. https://doi.org/10.1155/2016/5601327.
Frohnert, B. I., & Bernlohr, D. A. (2013). Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Advances in nutrition (Bethesda, Md.), 4(2), 157–163. https://doi.org/10.3945/an.112.003319
Gasiorowski, K., Lamer-Zarawska, E., Leszek, J., Parvathaneni, K., Yendluri, B. B., Błach-Olszewska, Z., & Aliev, G. (2011). Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration?. CNS & neurological disorders drug targets, 10(2), 184–191. https://doi.org/10.2174/187152711794480384
Goyal, M., Nagori, B. P., & Sasmal, D. (2009). Sedative and anticonvulsant effects of an alcoholic extract of Capparis decidua. Journal of natural medicines, 63(4), 375–379. https://doi.org/10.1007/s11418-009-0339-3
Guan, X., Middlebrooks, B. W., Alexander, S., & Wasserman, S. A. (2006). Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16794–16799. https://doi.org/10.1073/pnas.0607616103
Harris, R. A., Tindale, L., Lone, A., Singh, O., Macauley, S. L., Stanley, M., Holtzman, D. M., Bartha, R., & Cumming, R. C. (2016). Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis. The Journal of Neuroscience, 36(6), 1871–1878. https://doi.org/10.1523/JNEUROSCI.3131-15.2016
Hattesohl, M., Feistel, B., Sievers, H., Lehnfeld, R., Hegger, M., & Winterhoff, H. (2008). Extracts of Valeriana officinalis L. s.l. show anxiolytic and antidepressant effects but neither sedative nor myorelaxant properties. Phytomedicine. International Journal of Phytotherapy and Phytopharmacology, 15(1-2), 2–15. https://doi.org/10.1016/j.phymed.2007.11.027
Herrera-Calderón, O., Calero-Armijos, L. L., Cardona-G, W., Herrera-R, A., Moreno, G., Algarni, M. A., Alqarni, M., & El-Saber Batiha, G. (2021). Phytochemical Screening of Himatanthus sucuuba (Spruce) Woodson (Apocynaceae) Latex, In Vitro Cytotoxicity and Incision Wound Repair in Mice. Plants (Basel, Switzerland), 10(10), 2197. https://doi.org/10.3390/plants10102197
Hosamani, R., & Muralidhara (2013). Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Archives of Insect Biochemistry and Physiology, 83(1), 25–40. https://doi.org/10.1002/arch.21094
Jones, R. (2009). An acetylcholine receptor keeps muscles in balance. PLoS Biol., 7(12): e1000268. https://doi.org/10.1371/journal.pbio.1000268
Kim, D. S., Kim, J. Y., & Han, Y. S. (2007). Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult. Journal of alternative and omplementary Medicine, 13(3), 333–340. https://doi.org/10.1089/acm.2006.6107
Kumar, D., & Kumar, S. (2020). Neuroprotective constituents of Actaea acuminata (Wall. ex Royle) H. Hara roots. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 76(9-10), 357–365. https://doi.org/10.1515/znc-2020-0209
Kumara P., Sunil K., Arun Kumar B (2018) Determination of DPPH Free Radical Scavenging Activity by RP-HPLC, Rapid Sensitive Method for the Screening of Berry Fruit Juice Freeze Dried Extract. Nat Prod Chem Res 6: 341. https://doi.org/10.4172/2329-6836.1000341
Li, R., Tao, M., Wu, T., Zhuo, Z., Xu, T., Pan, S., & Xu, X. (2021). A promising strategy for investigating the anti-aging effect of natural compounds: a case study of caffeoylquinic acids. Food & function, 12(18), 8583–8593. https://doi.org/10.1039/d1fo01383a
Matos, F. J. A. Introdução à fitoquímica experimental. 3. ed. Edições UFC, Fortaleza, 2009.
Montero, I. F., Chagas, E. A., Melo Filho, A. A., Saraiva, S. A. M., Santos, R. C., Chagas, P. C., Duarte, E. D. R. S. (2018). Evaluation of total phenolic compounds and antioxidant activity in Amazon fruit. Chemical Engineering Transactions, 64: 649-654, 2018. https://doi.org/10.3303/CET1864109
Mukherjee, P. K., Kumar, V., Mal, M., & Houghton, P. J. (2007). Acetylcholinesterase inhibitors from plants. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(4), 289–300. https://doi.org/10.1016/j.phymed.2007.02.002
Nitrini, R., & Ferri, C. P. (2020). Burden of dementia in Brazil. Arquivos de Neuro-psiquiatria, 78(12), 755–756. https://doi.org/10.1590/0004-282X20200191
Ojha, R., Gautam, T. P., & Chaudhary, N. K. (2020). The Physicochemical Analysis and Phytochemical Screening of Some Medicinal Plants of Letang Municipality of Morang District, Nepal. BIBECHANA, 17:67-74. https://doi.org/10.3126/bibechana.v17i0.25236
Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S., & Ogunlana, E. O. (2015). Investigating prospects of Phyllanthus muellerianus as eco-friendly/sustainable material for reducing concrete steel-reinforcement corrosion in industrial/microbial environment. Energy Procedia, 74, 1274-1281.
Perry, E. K., Haroutunian, V., Davis, K. L., Levy, R., Lantos, P., Eagger, S., Honavar, M., Dean, A., Griffiths, M., & McKeith, I. G. (1994). Neocortical cholinergic activities differentiate Lewy body dementia from classical Alzheimer's disease. Neuroreport, 5(7), 747–749. https://doi.org/10.1097/00001756-199403000-00002
Pérez-González, M. Z., & Jiménez-Arellanes, M. A. (2021). Biotechnological processes to obtain bioactive secondary metabolites from some Mexican medicinal plants. Applied Microbiology and Biotechnology, 105(16-17), 6257–6274. https://doi.org/10.1007/s00253-021-11471-z
Phulara, S. C., Pandey, S., Jha, A., Chauhan, P. S., Gupta, P., & Shukla, V. (2021). Hemiterpene compound, 3,3-dimethylallyl alcohol promotes longevity and neuroprotection in Caenorhabditis elegans. GeroScience, 43(2), 791–807. https://doi.org/10.1007/s11357-020-00241-w
Pradhan, L. K., Sahoo, P. K., Aparna, S., Sargam, M., Biswal, A. K., Polai, O., Chauhan, N. R., & Das, S. K. (2021). Suppression of bisphenol A-induced oxidative stress by taurine promotes neuroprotection and restores altered neurobehavioral response in zebrafish (Danio rerio). Environmental toxicology, 36(11), 2342–2353. https://doi.org/10.1002/tox.23348
Prince, M., Guerchet, M., & Prina, M (2015). The epidemiology and impact of dementia - current state and future trends. Geneva: WHO; 2015. (Thematic briefs for the First WHO Ministerial Conference on Global Action Against Dementia, 16-17 March 2015). Available from: https://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdf?ua=1
Rajapakse, T., & Davenport, W. J. (2019). Phytomedicines in the Treatment of Migraine. CNS drugs, 33(5), 399–415. https://doi.org/10.1007/s40263-018-0597-2
Reznick, A. Z.; Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233:357–363, https://doi.org/10.1016/s0076- 6879(94)33041-7
Romanova, E. V., & Sweedler, J. V. (2018). Animal Model Systems in Neuroscience. ACS chemical neuroscience, 9(8), 1869–1870. https://doi.org/10.1021/acschemneuro.8b00380
Santos, P. C. M. (2022). Propriedades antioxidante, antimicrobiana e toxicidade do extrato da casca do alho (Allium sativum L.). 61 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Universidade Federal do Ceará, Fortaleza, 2022.
Santos, M. F. G., Mamede, R. V. S., Rufino, M. S. M., Brito, E. S., Alves, R. E. (2015). Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants, 4(3): 591-602. https://doi.org/10.3390/antiox4030591
Scialò, F., Sriram, A., Stefanatos, R., Spriggs, R. V., Loh, S. H. Y., Martins, L. M., & Sanz, A. (2020). Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster. Redox biology, 32, 101450. https://doi.org/10.1016/j.redox.2020.101450
Sharma, O.P. and Bhat, T.K. (2009) DPPH Antioxidant Assay Revisited. Food Chemistry, 113,1202-1205. http://dx.doi.org/10.1016/j.foodchem.2008.08.008
Srere, P.A. (1969). Citrate synthase. Method Enzymol. 13, 3–11. https://doi.org/10.1016/0076-6879(69)13005-0
Silva, N. C., Poetini, M. R., Bianchini, M. C., Almeida, F. P., Dahle, M. M. M., Araujo, S. M., Bortolotto, V. C., Musachio, E. A. S., Ramborger, B. P., Novo, D. R., Roehrs, R., Mesko, M. F., Prigol, M., & Puntel, R. L. (2021). Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. Environmental science and pollution research international, 28(14), 17519–17531. https://doi.org/10.1007/s11356-020-11848-z
Silva, R. M. F., Ribeiro, J. F. A., Freitas, M. C. C., Arruda, M. S. P., Nascimento, M. N., Barbosa, W. L. R., & Rolim Neto, P. (2013). Caracterização físico-química e análises por espectrofotometria ecromatografia de Peperomia pelucida L. (H.B.K.). Revista Brasileira de Plantas Medicinais, 15(4): 717-726. https://doi.org/10.1590/S1516-05722013000500012
Simon, A. F., Chou, M. T., Salazar, E. D., Nicholson, T., Saini, N., Metchev, S., & Krantz, D. E. (2012). A simple assay to study social behavior in Drosophila: measurement of social space within a group. Genes Brain Behav. 11:243–252, https://doi.org/10.1111/j.1601-183X.2011.00740.x
Souza, O. A., Couto-Lima, C. A., Rosa Machado, M. C., Espreafico, E. M., Pinheiro Ramos, R. G., & Alberici, L. C. (2017). Protective action of Omega-3 on paraquat intoxication in Drosophila melanogaster. Journal of Toxicology and Environmental Health. Part A, 80(19-21), 1050–1063. https://doi.org/10.1080/15287394.2017.1357345
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L., & Angelini, C. (2012). Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols, 7(6), 1235–1246. https://doi.org/10.1038/nprot.2012.058
Tello, J. A., Williams, H. E., Eppler, R. M., Steinhilb, M. L., & Khanna, M. (2022). Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Frontiers in molecular neuroscience, 15, 883358. https://doi.org/10.3389/fnmol.2022.883358
Torres, P. B., Pires, J. S., Santos, D. Y. A. C., & Chow, F. (2017). Ensaio do potencial antioxidante de extratos de algas através do sequestro do ABTS•+ em microplaca. Instituto de Biociências, Universidade de São Paulo, 1-4.
Vargas, F. S.; Almeida, P. D. O.; Boleti, A. P. A.; Pereira, M. M.; Souza, T. P.; Vasconcellos, M. C.; Nunez, C. V.; Pohlit, A. M.; Lima, E. S. (2016). Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complementary and Alternative Medicine, 16(1):83. https://doi.org/10.1186/s12906-016-1061-9
Volkenhoff, A., Weiler, A., Letzel, M., Stehling, M., Klämbt, C., & Schirmeier, S. (2015). Glial Glycolysis Is Essential for Neuronal Survival in Drosophila. Cell metabolism, 22(3), 437–447. https://doi.org/10.1016/j.cmet.2015.07.006
Wimo, A., Winblad, B., & Jönsson, L. (2010). The worldwide societal costs of dementia: Estimates for 2009. Alzheimer's & dementia: The Journal of the Alzheimer's Association, 6(2), 98–103. https://doi.org/10.1016/j.jalz.2010.01.010
Wolfe, K., Wu, X. and Liu, R.H. (2003) Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51, 609-614. http://dx.doi.org/ 10.1021/jf020782a
Yagi, S., Mohammed, A. B. A., Tzanova, T., Schohn, H., Abdelgadir, H., Stefanucci, A., Mollica, A., & Zengin, G. (2020). Chemical profile, antiproliferative, antioxidant, and enzyme inhibition activities and docking studies of Cymbopogon schoenanthus (L.) Spreng. and Cymbopogon nervatus (Hochst.) Chiov. from Sudan. Journal of Food Biochemistry, 44(2), e13107. https://doi.org/10.1111/jfbc.13107
Yamaguchi, K. K. L.; Lamarão, C. V.; Aranha, E. S. P.; Souza, R. O. S.; Oliveira, P. D. A.; Vasconcellos, M. C.; Lima, E. S.; Veiga-Júnior, V. F. (2017). HPLC-DAD profile of phenolic compounds, cytotoxicity, antioxidant and anti-inflammatory activities of the Amazon fruit Caryocar villosum. Química Nova, 40(5): 483-490, https://doi.org/10.21577/0100-4042.20170028
Yamaguchi, K. K. L.; Souza, A. O. (2020). Antioxidant, Hypoglycemic and Neuroprotective activities of extracts from fruits native to the Amazon region: A review. Biotechnology Journal International, 24(6): 9-31. https://doi.org/10.9734/BJI/2020/v24i630119
Ziegler, A.B., Ménagé, C., Grégoire, S., Garcia, T., Ferveur, J. F. (2015). Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System. PLOS ONE 10(8): e0135353. https://doi.org/10.1371/journal.pone.0135353
Zengin, G., Sarikürkçü, C., Aktümsek, A., & Celylan, R. (2016). Antioxidant potencial and anhibition od key enzymes linked to Alzheimer’s diseases and diabetes mellitus by monoternepe-rich essencial oil from Sideritis galatica Bornm. endemic to Turkey. Records of Natural Products. 10(2):125-206. https//doi.org/10.1111/jfbc.13107
Zhou, D. D., Luo, M., Shang, A., Moa, Q-Q., Li, B-Y., Gan, R-Y., & Li, H-B. (2021). Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid Med Cell Longev, 2021: 9932218. https://doi.org/10.1155/2021/9932218
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Márcia Pinheiro da Silva; Douglas Ramalho Lisboa; Stephanie Figueiredo Santos; Cláudia Marlise Balbinotti Andrade; Klenicy Kazumy de Lima Yamaguchi; Rosany Piccolotto Carvalho; Anderson de Oliveira Souza
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.