Comparison of two affordable DNA extraction methods for molecular detection of Salmonella isolates from broiler farm’s boot swabs

Authors

DOI:

https://doi.org/10.33448/rsd-v12i1.39618

Keywords:

Real-time PCR; Silica particles; Chelex-100 resin; Salmonella.

Abstract

There are many extraction methods available to purify bacterial DNA. PCR efficiency can vary depending on the quantity and quality of the template DNA used. This study evaluated the efficiency, quality, cost and rapidness of two in-house protocols, silica particles and Chelex-100 resin, for the extraction of twenty Salmonella isolates from boot swabs. The aim of this experiment was to compare the extraction methods for Salmonella spp. detection. DNA extraction was performed for each method and subjected to real-time PCR amplification. The amounts and integrity of DNA were determined using spectrophotometry and agarose gel electrophoresis, and the efficiency measured with real-time PCR. Limit of Detection (LOD) was determined with serial dilutions of a S. Typhimurium reference strain resulting in linear regression coefficients of R 2=0.992 (efficiency 119.31) for silica and R 2=0.958 (efficiency 93.33) for Chelex, with LOD of 10 -4 for both. Silica particles method resulted in higher DNA yield, 85.01 ± 59.11 compared to 50.74 ± 12.95 and 260/280 ratio, 1.77 ± 0.02 versus 1.63 ± 0.13. DNA integrity was superior using silica, gel showed a unique band higher than 2.000 bp, while Chelex-100 was imperceptive or degraded. Regarding PCR results, the mean quantification cycle (Cq) for silica was 17.08 ± 0.73 and Chelex-100, 17.64 ±0.56 (suggesting lower DNA values). Results showed that both methods were effective for the DNA extraction of Salmonella, once PCR resulted positive for all samples, efficiency was higher for silica. Chelex-100 resin was performed in less time at a lower cost.

References

Baratto, C. M., Gelinski, J. M. L. N., Bernardi, A. Z., Marafon, A., & Braun, F. (2012). Potential use of molecular-typing methods for the identification and characterization of Salmonella enterica serotypes isolated in the poultry production chain. Brazilian Journal of Poultry Science, 14, 173-179.

Boom, R., Sol, C. J., Salimans, M. M., Jansen, C. L., Wertheim-van Dillen, P. M., & van der Noordaa, J. (1990). Rapid and simple method for purification of nucleic acids. Journal of clinical microbiology, 28(3), 495-503.

Booth, C. S., Pienaar, E., Termaat, J. R., Whitney, S. E., Louw, T. M., & Viljoen, H. J. (2010). Efficiency of the Polymerase Chain Reaction. Chemical Engineering Science, 65(17), 4996-5006.

Borah, P., Porwollik, S., Desai, P., Nayak, P., Borah, P. P., Cheng, P., & McClelland, M. (2017). A simplified multiplex PCR-based typing method for common Salmonella enterica serovars supported by online server-based detection system. The Indian Journal of Medical Research, 146(2), 272.

Brasil (1995). Ministério da Agricultura. Pecuária e Abastecimento. Portaria nº 126 de 03 de novembro de 1995. Normas de Credenciamento e Monitoramento de Laboratórios de Diagnóstico das Salmoneloses Aviárias (S. Enteritidis. S.

Gallinarum. S. Pullorum e S. Typhimurium). Diário Oficial da União. Brasília. Seção 1. p. 3. Recuperado: 22/09/2022. Secretaria de Agricultura e Abastecimento.

Coordenadoria de Defesa Agropecuária. https://www.defesa.agricultura.sp.gov.br/legislacoes/portaria-sda-126-de-03-11-1995.372.htm

Bugarel, M., Granier, S. A., Weill, F. X., Fach, P., & Brisabois, A. (2011). A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype Typhimurium. BMC microbiology, 11(1), 1-11.

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry, 55(4), 611-622.

de Lamballerie, X., Zandotti, C., Vignoli, C., Bollet, C., & de Micco, P. (1992). A one-step microbial DNA extraction method using "Chelex 100" suitable for gene amplification. Research in microbiology, 143(8), 785-790.

Gupta, N. (2019). DNA extraction and polymerase chain reaction. Journal of cytology, 36(2).

Haddad, N., Ostyn, A., Karoui, C., Masselot, M., Thorel, M. F., Hughes, S. L., Inwald, J., Hewinson, R. G., & Durand, B. (2001). Spoligotype Diversity of Mycobacterium bovis Strains Isolated in France from 1979 to 2000. Journal of Clinical Microbiology, 39(10), 3623-3632.

Hashemi, A., & Baghbani‐Arani, F. (2015). The effective differentiation of Salmonella isolates using four PCR‐based typing methods. Journal of applied microbiology, 118(6), 1530-1540.

Hossain-Ripon, M. K., Hasan, M., Ahasan, M. M., Alam, M. W., & Kabir, S. (2011). Comparison of three different methods of genomic DNA extraction from gram positive and gram negative bacteria. Journal of Experimental Biosciences, 2(1), 55-60.

Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., de Pinna, E., Nair, S., Fields, P. I., & Weill, F. X. (2014). Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Research in microbiology, 165(7), 526-530.

Karimnasab, N., Tadayon, K., Khaki, P., Moradi Bidhendi, S., Ghaderi, R., Sekhavati, M., & Asadi, F. (2013). An optimized method from Salmonella enterica Enteritidis for PCR experiments. Archives of Razi Institute, 68(2), 105-109.

Khan, A. S., Pierneef, R. E., Gonzalez-Escalona, N., Maguire, M., Li, C., Tyson, G. H., Ayers, S., Georges, K., Abebe, W., & Adesiyun, A. A. (2022). Molecular Characterization of Salmonella detected along the broiler production chain in Trinidad and Tobago. Microorganisms, 10(3), 570.

Kipper, D., Mascitti, A. K., De Carli, S., Carneiro, A. M., Streck, A. F., Fonseca, A. S. K., Ikuta, N. & Lunge, V. R. (2022). Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Veterinary Sciences, 9(8), 405.

Lahiri, D. O., Bye, S., Nurnberger, J. I., Jr, Hodes, M. E., & Crisp, M. (1992). A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. Journal of biochemical and biophysical methods, 25(4), 193-205.

Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics, 6(1), 62.

Lee, S. H., Jung, B. Y., Rayamahji, N., Lee, H. S., Jeon, W. J., Choi, K. S., Kweon, C. H. & Yoo, H. S. (2009). A multiplex real-time PCR for differential detection and quantification of Salmonella spp., Salmonella enterica serovar Typhimurium and Enteritidis in meats. Journal of Veterinary Science, 10(1), 43-51.

Liu, Y., Lee, M.-A., Ooi, E.-E., Mavis, Y., Tan, A.-L., & Quek, H.-H. (2003). Molecular Typing of Salmonella enterica Serovar Typhi Isolates from Various Countries in Asia by a Multiplex PCR Assay on Variable-Number Tandem Repeats. Journal of Clinical Microbiology, 41(9), 4388–4394.

Lucena-Aguilar, G., Sánchez-López, A. M., Barberán-Aceituno, C., Carrillo-Avila, J. A., López-Guerrero, J. A., & Aguilar-Quesada, R. (2016). DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreservation and Biobanking, 14(4), 264-270.

Minitab 21.1.0 Statistical Software (2022). [Computer software]. State College, PA: Minitab Inc. (www.minitab.com)

Rubio, M. S., Penha, R. A. C., Almeida, A. M., Barbosa, F. O., & Berchieri, A. (2019). Duplex Real-Time PCR Using Sybr Green I for Quantification and Differential Diagnosis between Salmonella Enteritidis and Salmonella Typhimurium. Brazilian Journal of Poultry Science, 21(1), 1-6.

Salehi, T. Z., Madadgar, O., Tadjbakhsh, H., Mahzounieh, M. R., & Feizabadi, M. M. (2011). A molecular study of the Salmonella enterica serovars Abortusovis, Typhimurium, and Enteritidis. Turkish Journal of Veterinary & Animal Sciences, 35(5), 281-294.

Shivaprasad, H. L. (2000). Fowl typhoid and pullorum disease. Revue scientifique et technique (International Office of Epizootics), 19(2), 405-424.

Vingataramin, L., & Frost, E. H. (2015). A single protocol for extraction of gDNA from bacteria and yeast. BioTechniques, 58(3), 120-125.

Walker, N. J. (2002). A Technique Whose Time Has Come. Science, 296(5567), 557-59.

Wattiau, P., Boland, C., & Bertrand, S. (2011). Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Applied and environmental microbiology, 77(22), 7877-7885.

Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and environmental microbiology, 63(10), 3741-3751.

Xiong, D., Song, L., Tao, J., Zheng, H., Zhou, Z., Geng, S., Pan, Z., & Jiao, X. (2017). An Efficient Multiplex PCR-Based Assay as a Novel Tool for Accurate Inter-Serovar Discrimination of Salmonella Enteritidis, S. Pullorum/Gallinarum and S. Dublin. Frontiers in microbiology, 8, 420.

Downloads

Published

12/01/2023

How to Cite

PACHECO, J. I. M. .; ANJOS, K. B. A. dos .; SILVA, I. V. .; OKAR, R. G. .; RODRIGUES, S. M. B. D. .; FRANCABANDIERA, A. I.; RODRIGUEZ, M. C. Comparison of two affordable DNA extraction methods for molecular detection of Salmonella isolates from broiler farm’s boot swabs. Research, Society and Development, [S. l.], v. 12, n. 1, p. e28312139618, 2023. DOI: 10.33448/rsd-v12i1.39618. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39618. Acesso em: 26 apr. 2024.

Issue

Section

Agrarian and Biological Sciences