Photon flux density and cytokinin types influence biomass production and volatile organic compound accumulation in Dysphania ambrosioides L under in vitro conditions

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.39841

Keywords:

Medicinal plant; Micropropagation; Plant growth regulator; Light.

Abstract

This study aimed to evaluate different intensity of irradiance and cytokinins concentration which can be influential in growth and volatile compounds production in vitro for Dysphania ambrosioides L., a plant present in the RENISUS list for medicinal plants with high interest in research and use. The irradiance intensities of 16.5, 36.6, 47.6 and 73.2 µmol m-2s-1 in the growth room were evaluated for nodal segments development. Three kinds of cytokinin (BAP, TDZ and Kinetin) in four different concentrations (0.0, 0.5, 1.0 and 2.0 mg L-1) were studied. Nodal segments were kept in growth room under 47.6 µmol m-2s-1 of irradiance and without cytokinin was found suitable for nodal segment growth in vitro. The number of volatile compounds of this species was not affected by irradiance intensity or cytokinin, however, the concentrations were affected.

References

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4a ed., Vol. 456). Allured publishing corporation Carol Stream.

Alvarenga, I. C. A., Pacheco, F. V., Silva, S. T., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2015a). In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell, Tissue and Organ Culture (PCTOC), 122(2), 299-308.

Alvarenga, I. C. A., Silva, S. T., Vilela Bertolucci, S. K., Brasil Pereira Pinto, J. E., & Pacheco, F. V. (2015b). Application of thidiazuron (TDZ) for “in vitro” multiplication of yarrow (’Achillea millefolium’ L.) and profile of volatile compounds [Other Journal Article]. Australian Journal of Crop Science, 9(10), 948-953.

Aragón, C. E., Escalona, M., Rodriguez, R., Cañal, M. J., Capote, I., Pina, D., & González-Olmedo, J. (2010). Effect of sucrose, light, and carbon dioxide on plantain micropropagation in temporary immersion bioreactors. In Vitro Cellular & Developmental Biology - Plant, 46(1), 89-94.

Araújo, D. X., Rocha, T. T., de Carvalho, A. A., Bertolucci, S. K. V., Medeiros, A. P. R., Ribeiro, F. N. S., Barbosa, S. M., & Pinto, J. E. B. P. (2021). Photon flux density and wavelength influence on growth, photosynthetic pigments and volatile organic compound accumulation in Aeollanthus suaveolens (Catinga-de-mulata) under in vitro conditions. Industrial Crops and Products, 168, 113597.

Asmar, S. A., Resende, R. F., Araruna, E. C., Morais, T. P., & Luz, J. M. Q. (2011). Citocininas na multiplicação in vitro de hortelã-pimenta (Mentha x Piperita L.). Revista Brasileira de Plantas Medicinais, 13, 533-538.

Assis, E. S. d., Neto, A. R., de Lima, L. R., Silva, F. G., Rosa, M., Filho, S. C. V., & Silva Leite, M. (2016). “In vitro” culture of “Mouriri elliptica” (Mart.) under conditions that stimulate photoautotrophic behavior [Other Journal Article]. Australian Journal of Crop Science, 10(2), 229-236.

Cavalli, J.-F., Tomi, F., Bernardini, A.-F., & Casanova, J. (2004). Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound. Phytochemical Analysis, 15(5), 275-279.

Coelho, A. D., de Souza, C. K., Bertolucci, S. K. V., de Carvalho, A. A., Santos, G. C., de Oliveira, T., Marques, E. A., Salimena, J. P., & Pinto, J. E. B. P. (2021). Wavelength and light intensity enhance growth, phytochemical contents and antioxidant activity in micropropagated plantlets of Urtica dioica L. Plant Cell, Tissue and Organ Culture (PCTOC), 145(1), 59-74.

Costa, M., & Tavares, E. (2006). Anatomia foliar de Chenopodium ambrosioides L.(Chenopodiaceae) – erva-de-Santa Maria. Rev Bras Pl Med, 8(3), 63-71.

da Silva, G. M., Mohamed, A., de Carvalho, A. A., Pinto, J. E. B. P., Braga, F. C., de Pádua, R. M., Kreis, W., & Bertolucci, S. K. V. (2022). Influence of the wavelength and intensity of LED lights and cytokinins on the growth rate and the concentration of total cardenolides in Digitalis mariana Boiss. ssp. heywoodii (P. Silva and M. Silva) Hinz cultivated in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 151(1), 93-105.

de Hsie, B. S., Bueno, A. I. S., Bertolucci, S. K. V., de Carvalho, A. A., da Cunha, S. H. B., Martins, E. R., & Pinto, J. E. B. P. (2019). Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia Cham in vitro. Journal of Photochemistry and Photobiology B: Biology, 198, 111577.

de La Viña, G., Barceló-Muñoz, A., & Pliego-Alfaro, F. (2001). Effect of culture media and irradiance level on growth and morphology of Persea americana Mill microcuttings. Plant Cell, Tissue and Organ Culture, 65(3), 229-237.

Debnath, M., Malik, C. P., & Bisen, P. S. (2006). Micropropagation: a tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology, 7(1), 33-49.

Dembitsky, V., Shkrob, I., & Hanus, L. O. (2008). Ascaridole and related peroxides from the genus Chenopodium. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 152(2), 209-215.

Ferreira, E. B., Cavalcanti, P. P., & Nogueira, D. A. (2011). Experimental designs: um pacote R para análise de experimentos. Revista da Estatística da Universidade Federal de Ouro Preto, 1(1), 1-9.

García-Gonzáles, R., Quiroz, K., Carrasco, B., & Caligari, P. D. S. (2010). Plant tissue culture: current status, opportunities and challenges. Ciencia e Investigación Agraria, 37(3), 5-30.

Jo, E.-A., Tewari, R. K., Hahn, E.-J., & Paek, K.-Y. (2008). Effect of photoperiod and light intensity on in vitro propagation of Alocasia amazonica. Plant Biotechnology Reports, 2(3), 207-212.

Kristiansen, K., Ørnstrup, H., & Brandt, K. (1999). In vitro PPFD and media composition affect both in and ex vitro performance of Alstroemeria Butterfly-hybrids. Plant Cell, Tissue and Organ Culture, 56(3), 145-153.

Lazzarini, L. E. S., Bertolucci, S. K. V., Pacheco, F. V., dos Santos, J., Silva, S. T., de Carvalho, A. A., & Pinto, J. E. B. P. (2018). Quality and intensity of light affect Lippia gracilis Schauer plant growth and volatile compounds in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 135(3), 367-379.

Lee, S.-H., Tewari, R., Hahn, E.-J., & Paek, K.-Y. (2007). Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets. Plant Cell, Tissue and Organ Culture, 90(2), 141-151.

Morais, T., Luz, J., Silva, S., Resende, R., & Silva, A. (2012). Aplicações da cultura de tecidos em plantas medicinais. Revista Brasileira de Plantas Medicinais, 14(1), 110-121.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.

NIST. (2008). SPEECH GROUP WEBSITE. Topic detection and tracking evaluation. Retrieved 16 Dezembro 2022 from

R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rao, R. S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101-153.

Rocha, T. T., Araújo, D. X., de Carvalho, A. A., Germano, C. M., de Fátima Santos, M., Lameira, O. A., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2022). In vitro culture of Lippia dulcis (Trev.): light intensity and wavelength effects on growth, antioxidant defense, and volatile compound production. In Vitro Cellular & Developmental Biology - Plant, 58(4), 636-652.

Sáez, P. L., Bravo, L. A., Latsague, M. I., Toneatti, M. J., Sánchez-Olate, M., & Ríos, D. G. (2013). Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Science, 201-202, 12-24.

Soontornchainaksaeng, P., Chaicharoen, S., Sirijuntarut, M., & Kruatrachue, M. (2001). In vitro studies on the effect of light intensity on plant growth of Phaius tankervilliae (Banks ex L’Herit.) Bl. and Vanda coerulea Griff. Science Asia, 27(4), 233-237.

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Artmed Editora.

Verissimo, L. F., Bacchi, A. D., Zaminelli, T., Paula, G. H. O. d., & Moreira, E. G. (2011). Herbs of interest to the Brazilian Federal Government: female reproductive and developmental toxicity studies. Revista Brasileira de Farmacognosia, 21(6), 1163-1171.

Visser, C., Qureshi, J. A., Gill, R., & Saxena, P. K. (1992). Morphoregulatory role of thidiazuron 1: substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiology, 99(4), 1704-1707.

Zhang, M., Zhao, D., Ma, Z., Li, X., & Xiao, Y. (2009). Growth and photosynthetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. HortScience horts, 44(3), 757-763.

Published

20/01/2023

How to Cite

CARVALHO, A. A. de .; ASSIS, R. M. A. de .; ROCHA , J. P. M. .; LEITE, J. J. F. .; PEREIRA, F. D. .; SANTOS, J. P. dos .; BERTOLUCCI, S. K. V. .; PINTO, J. E. B. P. . Photon flux density and cytokinin types influence biomass production and volatile organic compound accumulation in Dysphania ambrosioides L under in vitro conditions. Research, Society and Development, [S. l.], v. 12, n. 2, p. e5512239841, 2023. DOI: 10.33448/rsd-v12i2.39841. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/39841. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences