Growth promotion and phosphorus solubilization, by Bacillus megaterium and B. subitilis, via seed inoculation, associated with phosphate fertilization, in soybean

Authors

DOI:

https://doi.org/10.33448/rsd-v12i2.40062

Keywords:

Glycine max L.; Liquid inoculant; Plant growth promotion; Phosphate solubilization and productivity.

Abstract

The plant-microorganism interaction has been the focus of research in recent decades. The objective was to evaluate the agronomic efficiency of the inoculant, containing Bacillus megaterium and B. subitilis, for soybean, via seeds, associated with phosphate fertilization. Four trials were conducted, from October 2019 to March 2020 in Palotina/PR, São Miguel do Iguaçu/PR, Cascavel/PR and Toledo/PR, with the cultivar Piooner® 96y90. In a randomized block design, with seven treatments and four replications, the following were tested: control; 50% phosphate fertilization (super triple) and without inoculation; 100% phosphate fertilization and without inoculation; 50% phosphorus fertilization and seed inoculation with Bacillus megaterium and B. subitilis (50 mL per 50kg-1 of seeds); 50% phosphorus fertilization and seed inoculation with Bacillus megaterium and B. subitilis (100 mL per 50kg-1); 50% phosphorus fertilization and seed inoculation with Bacillus megaterium and B. subitilis (150 mL per 50kg-1); and 50% phosphorus fertilization and seed inoculation with Bacillus megaterium and B. subitilis (200 mL per 50kg-1). At the R1 stage, plants were collected to evaluate plant height, stem diameter, mass of leaves, roots and nodules; number of nodules per plant and leaf N, P and K contents. After harvesting, grain productivity and N, P and K contents were estimated. The results demonstrated the agronomic efficiency of the inoculant containing Bacillus megaterium and Bacillus subitilis, at a dose of 100 mL per 50 kg of seeds, with half the phosphorus dose for the soybean crop.

References

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26 (1), 1–20. http://dx.doi.org/10.1016/j.jksus.2013.05.001.

Araújo, F. F. (2008). Inoculação de sementes com Bacillus subtilis, formulado com farinha de ostra e desenvolvimento de milho, soja e algodão. Ciência e Agrotecnologia, 2 (1), 456-462.

Baldani, J., Caruso, L., Baldani, V. L. D., Goi, S. R., & Döbereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29 (5–6), 911–922. Disponível em: <http://linkinghub.elsevier.com/retrieve/pii/S0038071796002180>.

Baldani, J. I., & Baldani, V. L. D. (2005). History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciências, 77(1),549-579.

Balota, E. L., Lopes, E. S., Hungria, M., & Dobereiner, J. (1995). Interaçoes e efeitos fisiológicos de bactérias diazotróficas e fungos micorrízicos arbusculares na mandioca. Pesquisa Agropecuaria Brasileira, 30(11), 1335–1345.

Bottini, R., Fulchieri, M., Pearce, D., & Pharis, R. P. (1989). Identification of gibberellins A(1), A(3), and Iso-A(3) in cultures of Azospirillum lipoferum. Plant physiology, 90(1), 45–57. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1061674&tool=pmcentrez&rendertype=abstract.

Bucher, C. A., Bucher, C. P. C., Araujo, A. P., & Sperandio, M. V. L. (2018). Fósforo. In: Fernandes, M.S., Souza, S.R., Santos, L.A. (Eds.). Nutrição Mineral de Plantas. (pp. 401–428). Viçosa: SBCS.

Cacciari, I., Lippi, D., Pietrosanti, T., & Pietrosanti, W. (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant and Soil, 115(1), 151–153.

Chibeba, A. M., Guimarães, M. F., Brito, O. R., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015). Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. American Journal of Plant Science, 6(1), 1641-1649.

Cruz, C. D. Programa GENES: biometria. Viçosa: UFV, 2006. 382p.

Dartora, J., Guimarães, V. F., Marini, D., & Sander, G. (2013). Adubação nitrogenada associada à inoculação com Azospirillum brasilense e Herbaspirillum seropedicae na cultura do milho. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(10), 1023-1029.

Didonet, A. D., Rodrigues, O., & Kenner, M. H. (1996). Acúmulo de nitrogênio e de massa seca em plantas de trigo inoculadas com Azospirillum brasilense. Pesquisa Agropecuária Brasileira, 31(9), 645-651.

Döbereiner, J., Baldani, V. L. D., & Baldani, J. I. (1995). Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Brasília: Embrapa-SPI, 1995, 60p.

Döbereiner, J., Marriel, I. E., & Nery, M. (1976). Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology, 22(10), 1464–1473.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2013). Sistema brasileiro de classificação de solos. (3.ed.). Embrapa, 353 p.

Farinelli, R., & Lemos, L. B. (2012). Nitrogênio em cobertura na cultura do milho em preparo convencional e plantio direto consolidados. Pesquisa Agropecuária Tropical, 42(1), 63 70.

Frazão, J. J., Silva, A. R., Silva, V. L., Oliveira, V. A., & Correa, R. B. (2014). Fertilizantes nitrogenados de deficiência aumentada e ureia na cultura do milho. Revista Brasileira de Engenharia Agrícola e ambiental, 18(12), 1262-1267.

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39, Disponível em: <http://dx.doi.org/10.1016/j.micres.2013.09.009>.

Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251(1), 1–7. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/16099604>.

Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1), 12 <https://www.cogentoa.com/article/10.1080/23311932.2015.1127500>.

Horrigan L., Lawrence R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and humn heath harms of industrial agriculture. Environmental Healtb Perspectives, 110(1), 445-456.

Hungria, M., & Megías, M. (2013). Uma década de ouro se aproxima para a microbiologia do solo: expectativas da pesquisa, da indústria, dos agricultores e da sociedade. In: Iberoamerican Confernce on Beneficial Plant- microorganism – environment interactions. Anais CNPSO, 510-517.

Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, P. O. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1), 413-425.

Instrução Normativa nº30, de 12 de novembro de 2010 (MAPA).

Köppen, W., Geiger, R. (1928). Klimate der Erde. Gotha: Verlag Justus Perthes.

Lima, F. F., Nunes, L. A. P. L., Marcia, D. O. V. B., Figueiredo, M. V. B., Araújo, F. F., Luciano, M., Lima, L. M.; Araújo, & A. S. F. (2011). Bacillus subtilis e adubação nitrogenada na produtividade do milho. Revista Brasileira de Ciências Agrárias, v. 6.

Manjula, K., & Podile, A. R. (2005). Increase in seedling emergence and dry weight of pigeon pea in the field with chitin-supplemented formulations of Bacillus subtilis AF 1. World Journal of Microbiology & Biotechnology, 21(1), 1057–1062.

Martins, E. (2006). Contabilidade de custos. São Paulo: Atlas.

Mazzuchelli, R. C. L., Sossai, B. F., & Araujo, F. F. (20014). Inoculação de Bacillus subtilis e Azospirillum brasilense na cultura do milho. Colloquium Agrariae, 10(2), 40-47.

Mehdipour, M. M. J., Emtiazi, G., & Salehi, Z. (2012). Enhanced auxin production by Azospirillum pure cultures from plant root exudates. Journal of Agricultural Science and Technology, 14(5), 985–994.

Novakowiski, J. H., Sandini, I. E., Falbo, M. K., Moraes, A., Novakowiski, J. H., & Cheng, N. C. (2011). Efeito residual da adubação nitrogenada e inoculação de Azospirillum brasilense na cultura do milho. Semina: Ciências Agrárias, 32(1), 1687- 1698.

Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., & DiLeo, M. V. (2016). From the lab to the farm: na industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7 (1), 1110.

Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre : Artmed. 347 p.

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais. (2. ed.) Departamento de Solos da UFRGS, 147p. (Boletim Técnico, 5).

Tsai, S. M., Rossetto, R. (1992). Transformações microbianas do fósforo. In: Cardoso, E. J. B. N. Microbiologia do solo (pp. 231–242). Campinas, Sociedade Brasileira de Ciência do Solo.

Tsavkelova, E.A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006) Microbial Producers of Plant Growth Stimulators and Their Practical Use: A Review. Applied Biochemistry and Microbiology, 42(1), 117–126.

Viruel, E., Erazzú, L. E., Martinez Calsina, L., Ferrero, M. A., Lucca, M. E., & Sineriz, F. (2014). Inoculation of maize with phosphate solubilizing bacteria: effect on plant growth and yield. Journal of Soil Science and Plant Nutrition, 14(4), 819-831.

Published

19/01/2023

How to Cite

GUIMARÃES, V. F. .; KLEIN, J.; KLEIN, D. K. . Growth promotion and phosphorus solubilization, by Bacillus megaterium and B. subitilis, via seed inoculation, associated with phosphate fertilization, in soybean. Research, Society and Development, [S. l.], v. 12, n. 2, p. e9812240062, 2023. DOI: 10.33448/rsd-v12i2.40062. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40062. Acesso em: 3 jun. 2023.

Issue

Section

Agrarian and Biological Sciences