Development of microencapsulate containing Hamamelis virginiana L. extract as a potential agent in derm cosmetic formulations
DOI:
https://doi.org/10.33448/rsd-v12i2.40116Keywords:
Alginate; Cosmetics; Encapsulation.Abstract
Due to the numerous benefits related to the Hamamelis virginiana L. extract, including its astringent and anti-inflammatory function, the plant has been extensively studied with the purpose of being increasingly used in cosmetics. Encapsulation, which is equally relevant when it comes to dermatological products, forms the perfect combination for a good beauty product with the extract. This process consists of coating a certain bioactive compound in a thin layer of polymeric material, sodium alginate, a biodegradable natural polysaccharide. In view of this, the objective was to produce microencapsulated H. virginiana using sodium alginate (encapsulant), evaluating its release profile. The microencapsules were prepared by dripping and crosslinking, subsequently subjected to the detection of phenolic compounds in a solution similar to skin acidity (pH 5.5), every 20 min for 120 minutes. In addition to the encapsulation process, the microencapsules were evaluated in terms of size and degree of imbibition. It was possible to obtain microencapsules (± 5mm) doped with H. virginiana extract in a ratio (1:4), satisfactorily allowing the immobilization of phenolic compounds, without pores, which would compromise their stability. The maximum release profile of the compounds (71.75 mg. L-1) occurred after 40 min, reaching imbibition stability after 60 min. The microencapsules produced have potential programmed release capacity for the incorporation of cosmetic formulations with tonic and antioxidant applications, resulting in an improvement in the appearance of the skin and thus inhibiting the aging process. The proposition makes room for the imprisonment of different bioactives capable of binding to other elements of biological interest.
References
Abdallah, M. S., Mustafa, M., Nallappan, M. A. P., Choi, S., Paik, J. & Rusea, G. (2021). Determination of phenolics and flavonoids of some useful medicinal plants and bioassay-guided fractionation substances of sclerocarya birrea (a. rich) hochst stem (bark) extract and their efficacy against salmonella typhi. Frontiers in Chemistry, 9, 1-13.
Adokawa J., Saitou S. & Shoda S. (2005). Preparation of alginatepolymethacrylate hybrid material by radical polymerization of cationic methacrylate monomer in the presence of sodium alginate. Carbohydrate Polymers, 60(2), 253-258.
Álvarez, R., Araya, H., Navarro-Lisboa, R. & Dicastillo, C. L. (2016). Evaluation of polyphenol content and antioxidant capacity of fruits and vegetables using a modifi ed enzymatic extraction. Food Technol. Biotechnol, 54(4), 462-467. doi: 10.17113/ftb.54.04.16.4497.
Ardisson, L. (2000). Estudo do comportamento do propilenoglicol como solvente extrator para as cascas do Stryphnodendron adstringens (Mart.) Coville (barbatimão), planta utilizada na medicina popular no tratamento de feridas. [Monografia Bacharelado em Ciências Farmacêuticas]. Universidade Federal de Minas Gerais, Belo Horizonte.
Bajčan, D., Harangozo, L., Hrabovská, D. & Bončíková, D. (2013). Optimizing conditions for spectrophotometric determination of total polyphenols in wines using folin-ciocalteu reagent. Journal of Microbiology, Biotechnology and Food Sciences, 2(Special issue), 1271-1280.
Belščak-Cvitanović, C. et al. (2010). Encapsulation of polyphenols from Rubus idaeus L.leaves extract by electrostatic extrusion. Book of Full Papers of the 5th Central European Congress on Food, 44, 8-14.
Bhandari, B., Fang, Z. (2010). Encapsulation of polyphenols – a review. Trends in Food Science & Technology, 21(10), 510-523.
Blainski, A., Lopes, G. C. & Mello, J. C. P. (2013). Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from limonium brasiliense L. Journal Molecules, 18(6), 6852-6865.
Chan, K. W., Iqbal, S., Khong, N. M. H., Ooi, D. & Ismail, M. (2014). Antioxidant activity of phenolicsesaponins rich fraction prepared from defatted kenaf seed meal. LWT - Food Science and Technology, 56, 181-186.
Constant, P. B. L., Stringheta, P. C. (2002). Microencapsulação de ingredientes alimentícios. Boletim SBCTA, 36(1), 12-18.
Cruz, M. E. M., Simões, S. I., Corvo, M. L., Martins, M. B. F. E. & Gaspar, M. M. (2009). “Nanoparticulate” Drug Delivery Systems: formulation and characterization.
Ghauri, Z. H., Islam, A., Qadir, M. A., Ghaffar, A., Gull, N., Azam, M., ... & Khan, R. U. (2022). Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone. Materials Chemistry and Physics, 277, 125456.
Galvão, M. A. M., Arruda, A. O., Bezerra, I. C. F., Ferreira, M. R. A. & Soares, L. A. L. (2018). Evaluation of the Folin-Ciocalteu Method and Quantification of Total Tannins in Stem Barks and Pods from Libidibia ferrea (Mart. ex Tul) L. P. Queiroz. Brazilian archives of biology and technology, 61, e18170586. https://doi.org/10.1590/1678-4324-2018170586.
Hudz, N., Yezerska, O., Shanaida, M., Sedláčková, V. H. & Wieczorek, P. P. (2019). Application of the folin-ciocalteu method to the evaluation of salvia sclarea extracts. Pharmacia, 66(4), 209-215.
Jeoh, T., Wong, D. E., Strobel, S. A., Hudnall, K., Pereira, N. R., Williams, K. A., Arbaugh, B. M., Cunniffe, J. C. & Scher, H. B. (2021). How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. Plos one. Disponível em: https://doi.org/10.1371/journal.pone.0247171. Acesso em: 05 nov. 2021.
Melo Junior, J. P. M., Guerra Filho, V. G., Rosa, M., David, J., Souza, V. C. & Carvalho, V. P. (2021). Release profile of lansoprazole encapsulated in sodium alginate beads. Journal of Pharmacy and Pharmacology, 9, 197-204.
Jyothi, N. V. et al. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of microencapsulation, 27(3), 187-197.
Khandai, M., Chakraborty, S., Sharma, A., Pattnaik, S., Patra, C. N., Dinda, S. C. & Sem, K. K. (2010). Preparation and evaluation of algino-sericin mucoadhesive microspheres: An approach for sustained drug delivery. Journal of Advanced Pharmaceutical Research, 1, 48-60.
Kim, J., Soh, S. Y., Bae, H. & Nam, S. (2019). Antioxidant and phenolic contentes in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Applied Biological Chemistry, 62(17), 1-9. https://doi.org/10.1186/s13765-019-0422-8.
Lopes, S., Bueno, L., Júnior, F. A. & Finkler, C. (2017). Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. Annals of the Brazilian Academy of Sciences, 89(3), 1601-1613.
Machado, A. R. (2016). Encapsulação de compostos fenólicos extraídos de microalgas submetidos ao sistema gastro intestinal in vitro. [Tese de Doutorado]. Universidade Federal do Rio Grande, Rio Grande.
Moraes, M. L. L., Micke, G. A. & Tavares, M. F. M. (2004). Caracterização de água de hamamélis de interesse cosmético por cromatografia gasosa e eletroforese capilar. Revista Analytica, 3(2), 41-44.
Moreira-Araújo, R. S et al. (2018). Identificação e quantificação de compostos fenólicos e da atividade antioxidante no feijão-caupi em grãos da cultivar BRS xiquexique. Revista Caatinga, 31(1), 209-216.
Nissako, T. & Liu, Y. (2020). Microfluidic Encapsulation of Hydrophobic Antifouling Biocides in Calcium Alginate Hydrogels for Controllable Release. ACS Omega, 5(40), 25695-25703.
Noreen, H., Semmar, N., Farman, M. & Mccullagh, J. S. O. (2017). Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pacific Journal of Tropical Medicine, 10, 792-80.
Paula, H. C. B., Oliveira, E. F., Abreu, F. O. M. S., Paula, R. C. M., Morais, S. M. & Forte, M. M. C. (2010). Esferas (Beads) de Alginato como Agente Encapsulante de Óleo de Croton Zehntneri Pax et Hoffm. Polímeros: Ciência e Tecnologia, 20(2), 112-120. https://doi.org/10.1590/S0104-14282010005000019.
Rê, M. I. (2000). Microencapsulação em busca de produtos ‘inteligentes’. Ciência Hoje – Revista de divulgação científica da sociedade brasileira para o progresso e a ciência, 27(162), 24-29.
Ruivo, J. S. P. (2012). Fitocosmética: aplicação de extratos vegetais em cosmética e dermatologia. Porto: Universidade Fernando Pessoa.
Silva, T. L., Gimenes, M. L., Vieira, M. G. A. & Silva, M. G. C. (2013). Extração de sericina de casulos do bicho da seda (bombyx mori) e formação de partículas a base de sericina e alginato.
SILVA, I. C. T., TAVARES, J. R., & Lyra, A. M. (2022). Micropartículas de liberação modificada contendo cetoprofeno. Visão Acadêmica, 23(1).
Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Teixeira, C. S. (2019). Hamamelis virginiana: composição fitoquímica, usos na medicina tradicional, propriedades biológicas e toxicologia. [Dissertação de Mestrado em Ciências Farmacêuticas]. Universidade da Beira Interior, Covilhã, Disponível em: https://ubibliorum.ubi.pt/bitstream/10400.6/8612/1/6818_14613.pdf. Acesso em: 22 out. 2021.
Vaz, I. F. S. (2014). Principais plantas em dermatologia. [Dissertação de Mestrado em Ciências Farmacêuticas]. Faculdade de Ciências e Tecnologia, Algarve. Disponível em: https://core.ac.uk/download/pdf/61527954.pdf. Acesso em: 05 set. 2021.
Wissam, Z. & Samer, H. (2019). Encapsulation of flaxseed oil extract in alginate–salep system by ionic gelation. Brazilian Journal of Pharmaceutical Sciences, 55, 1-9.
Wong, D. E., Cunniffe, J. C., Scher, H. B. & Jeoh, T. (2020). Chelator regulation of in situ calcium availability to enable spray-dry microencapsulation in cross-linked alginates. American Chemical Society, 5(38), 24453-24460. https://doi.org/10.1021/acsomega.0c02030.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Marielly Silva Martins; Jenifer Ribeiro de Jesus; Alex Rodrigues Gomes; Manoel Aguiar Neto Filho; Luciana Arantes Dantas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.