Are urban streams important contributors to greenhouse gases?

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.40340

Keywords:

Urban waters; Carbon dioxide; Aquatic macrophytes.

Abstract

The objective of this study was to analyze the emission of greenhouse gases through the diffusion flow of CO2 in the water-atmosphere interface of four urban streams, which flow into one of the main rivers of the Pantanal (River Paraguay). For this, we used a floating chamber on aquatic macrophytes and in an open water, considering the flow (emission and/or absorption) of CO2. The field campaign was carried out in the wet season (February) and dry season (September) in the Pantanal. During the rainy season, the streams had between 5 and 40% of vegetation cover, while in the dry season it was 80 to 100%. The rainy season presented an emission about twice as high as in the dry season (5.180,64 ± 8.196,20 mg m-2 day-1 and 2.654,92 ± 7.190,64 mg m-2 day-1, respectively). Only in one of the analyzed streams, it was not possible to find absorption of CO2 by macrophytes, while the other three showed absorption by these plants. These environments are quite neglected, however, in tropical environments they demonstrate an important role as contributors to the reduction of greenhouse gases and can help in carbon storage and nutrient cycling. In these places, aquatic macrophytes are important for CO2 reduction and can be better exploited for landscaping and as a source of atmospheric carbon reduction.

References

Attermeyer, K., Flury, S., Jayakumar, R., Fiener, P., Steger, K., Arya, V., & Premke, K. (2016). Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Scientific reports, 6(1), 1-10.

Aumont, O., Orr, J. C., Monfray, P., Ludwig, W., Amiotte‐Suchet, P., & Probst, J. L. (2001). Riverine‐driven interhemispheric transport of carbon. Global Biogeochemical Cycles, 15(2), 393-405.

Badiou, P., Page, B., & Ross, L. (2019). A comparison of water quality and greenhouse gas emissions in constructed wetlands and conventional retention basins with and without submerged macrophyte management for storm water regulation. Ecological Engineering, 127, 292-301.

Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., & Gålfalk, M. (2015). Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 12(12), 3849-3859.

Callisto, M., Ferreira, W. R., Moreno, P., Goulart, M., & Petrucio, M. (2002). Aplicação de um protocolo de avaliação rápida da diversidade de habitats em atividade de ensino e pesquisa (MG-RJ). Acta Limnologica Brasiliensia, 14(1) 91-98.

Cardoso, S. J., Enrich-Prast, A., Pace, M. L., & Roland, F. (2014). Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnology and Oceanography, 59(1), 48-54.

CETESB. (2014). Companhia Ambiental do Estado de São Paulo. Análise de clorofila-a como ferramenta no monitoramento das águas. https://cetesb.sp.gov.br/wp-content/uploads/2013/11/L5306.pdf

CONAMA. (2005). Conselho Nacional do Meio Ambiente. Dispõe sobre a Classificação dos Corpos de Água e Diretrizes Ambientais para o seu Enquadramento, bem como Estabelece as Condições e Padrões de Lançamento de Efluentes, e Dá Outras Providências. Diário Oficial da União (DOU), (053), 58-63.

Davidson, T. A., Audet, J., Svenning, J. C., Lauridsen, T. L., Søndergaard, M., Landkildehus, F., & Jeppesen, E. (2015). Eutrophication effects on greenhouse gas fluxes from shallow‐lake mesocosms override those of climate warming. Global Change Biology, 21(12), 4449-4463.

Esteves, F. D. A. (2011). Fundamentos da limnologia. (3a ed.), Interciência.

Girardi, R., Pinheiro, A., Garbossa, L. H. P., & Torres, É. (2016). Water quality change of rivers during rainy events in a watershed with different land uses in Southern Brazil. Rbrh, 21(3), 514-524.

Grasset, C., Abril, G., Guillard, L., Delolme, C., & Bornette, G. (2016). Carbon emission along a eutrophication gradient in temperate riverine wetlands: effect of primary productivity and plant community composition. Freshwater Biology, 61(9), 1405-1420.

Hamid, A., Bhat, S. U., & Jehangir, A. (2020). Local determinants influencing stream water quality. Applied Water Science, 10(1), 1-16.

Harpenslager, S. F., Thiemer, K., Levertz, C., Misteli, B., Sebola, K. M., Schneider, S. C., & Köhler, J. (2022). Short-term effects of macrophyte removal on emission of CO2 and CH4 in shallow lakes. Aquatic Botany, 182, 103555.

Ho, L., Jerves-Cobo, R., Barthel, M., Six, J., Bode, S., Boeckx, P., & Goethals, P. (2020). Effects of land use and water quality on greenhouse gas emissions from an urban river system. Biogeosciences Discussions, 311, 1-22.

Hu, B., Wang, D., Zhou, J., Meng, W., Li, C., Sun, Z., & Wang, Z. (2018). Greenhouse gases emission from the sewage draining rivers. Science of the Total Environment, 612, 1454-1462.

IBGE. (2021). Instituto Brasileiro de Geografia e Estatística. Cidades. https://cidades.ibge.gov.br/brasil/mt/caceres/panorama.

Jang, J. Y., Kim, D. W., Choi, Y. J., & Jang, D. W. (2021). Analysis of the water quality characteristics of urban streams using the flow–pollutant loading relationship and a load duration curve (LDC). Applied Sciences, 11(20), 9694.

Junger, P. C., Dantas, F. D. C. C., Nobre, R. L. G., Kosten, S., Venticinque, E. M., de Carvalho Araújo, F., & Amado, A. M. (2019). Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Science of the Total Environment, 664, 283-295.

Koehler, B., Landelius, T., Weyhenmeyer, G. A., Machida, N., & Tranvik, L. J. (2014). Sunlight‐induced carbon dioxide emissions from inland waters. Global Biogeochemical Cycles, 28(7), 696-711.

Lázaro, W. L., Oliveira-Júnior, E. S., Silva, C. J. D., Castrillon, S. K. I., & Muniz, C. C. (2020). Climate change reflected in one of the largest wetlands in the world: an overview of the Northern Pantanal water regime. Acta Limnologica Brasiliensia, 32.

Marotta, H., Pinho, L., Gudasz, C., Bastviken, D., Tranvik, L. J., & Enrich-Prast, A. (2014). Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change, 4(6), 467-470.

Oliveira-Junior, E. S., de Lima, T. E., da Silva Poquiviqui, A., da Costa Tavares, C., Machado, C. S. D., dos Santos Carvalho, C., & de Souza, C. A. (2020). Aplicação de protocolos de avaliação rápida como ferramenta robusta na qualificação ambiental em dois córregos urbanos que desaguam no rio Paraguai. Raega-O Espaço Geográfico em Análise, 50, 231-252.

Oliveira Junior, E. S., van Bergen, T. J., Nauta, J., Budiša, A., Aben, R. C., Weideveld, S. T., & Kosten, S. (2021). Water Hyacinth’s effect on greenhouse gas fluxes: a field study in a wide variety of tropical water bodies. Ecosystems, 24(4), 988-1004.

Oliveira Junior, E. S., Buhler, B. F., Muniz, C. C., & Furlan, A. O. (2014). Córregos urbanos do município de Cáceres-MT, Brasil: um olhar para a conservação. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 3268-3274.

Peixoto, R. B., Marotta, H., Bastviken, D., & Enrich-Prast, A. (2016). Floating aquatic macrophytes can substantially offset open water CO 2 emissions from tropical floodplain lake ecosystems. Ecosystems, 19, 724-736.

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355-359.

Rodrigues, A. S. D. L. (2008). Adequação de um protocolo de avaliação rápida para o monitoramento e avaliação ambiental de cursos d’água inseridos em campos rupestres. (Dissertação de Mestrado). Universidade Federal de Ouro Preto, Ouro Preto, Brasil.

Shanableh, A. (2007). pH-dependence and contributions of the carbonic species to CO2 flux across the gas/liquid interface. Jordan Journal of Civil Engineering, 1(1), 109-122.

Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J., & Welty, C. (2017). Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences, 14(11), 2831-2849.

Tucci, C. E. M. (2008). Águas urbanas. Estudos Avançados, 22(63), 97-112.

Zhang, W., Li, H., Xiao, Q., & Li, X. (2021). Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin. Water Research, 189, 116624.

Published

08/03/2023

How to Cite

PAULA, J. S. B. C. de; LÁZARO, W. L. .; MUNIZ, C. C. .; OLIVEIRA JUNIOR, E. S. . Are urban streams important contributors to greenhouse gases?. Research, Society and Development, [S. l.], v. 12, n. 3, p. e18912340340, 2023. DOI: 10.33448/rsd-v12i3.40340. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40340. Acesso em: 22 dec. 2024.

Issue

Section

Agrarian and Biological Sciences