Antibacterial activity of chitosan and zinc oxide impregnated in PVA-based membranes
DOI:
https://doi.org/10.33448/rsd-v12i3.40720Keywords:
Membranes; Biomaterials; Surfaces and interfaces; Blends.Abstract
The development of alternatives to conventional antibiotics against superbugs represents an important step to avoid the increasing resistance of bacteria observed in conventional treatments. Herein, it was evaluated the influence of different combinations of two active antibacterial components (chitosan and zinc oxide) and a host poly (vinyl alcohol - PVA) in membranes produced by the solvent casting technique. Those systems were evaluated in terms of the biofilm inactivation, kill-time assays and inhibition haloes against S. aureus (ATCC 25923) in membranes that must release reactive components while preserving their integrity and favoring the generation of reactive species to improve the antibacterial activity. The results suggest the potential of the combination of chitosan, zinc oxide and poly (vinyl alcohol) to inhibit the growth of S. aureus colonies since the PVA improved the dispersion of the components, whereas chitosan-ZnO chelate improves the mutual activity of the metal oxide and the natural polymer template.
References
Abdeen, Z. I., El Farargy, A. F., & Negm, N. A. (2018). Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. Journal of Molecular Liquids, 250, 335–343. https://doi.org/https://doi.org/10.1016/j.molliq.2017.12.032
Abureesh, M. A., Oladipo, A. A., Mizwari, Z. M., & Berksel, E. (2018). Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug. International Journal of Biological Macromolecules, 116, 417–425. https://doi.org/10.1016/J.IJBIOMAC.2018.05.065
Ahmad Yusof, N. A., Mat Zain, N., & Pauzi, N. (2019). Synthesis of Chitosan/Zinc Oxide Nanoparticles Stabilized by Chitosan via Microwave Heating. Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 450. https://doi.org/10.9767/bcrec.14.2.3319.450-458
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties. Journal of Electronic Materials, 47(7), 3912–3926. https://doi.org/10.1007/s11664-018-6270-1
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2019). Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips. Journal of Electronic Materials, 48(2), 1116–1121. https://doi.org/10.1007/s11664-018-6793-5
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2021). Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polymer Bulletin, 78(3), 1551–1571. https://doi.org/10.1007/s00289-020-03173-9
Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955–1965. https://doi.org/10.1007/s00289-020-03194-4
Ayub, A., & Raza, Z. A. (2021). Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. International Journal of Biological Macromolecules, 192, 1196–1216. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.050
Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., & Irfan, A. (2020). Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. International Journal of Biological Macromolecules, 163, 603–617. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.06.287
Barreto, M. S. R., Andrade, C. T., Azero, E. G., Paschoalin, V. M. F., & Del Aguila, E. M. (2017). Production of chitosan/zinc oxide complex by ultrasonic treatment with antibacterial activity. Journal of Bacteriology & Parasitology, 8(5), 1–7. https://doi.org/10.4172/2155-9597.1000330
Bhattacharjee, B., Ghosh, S., Mukherjee, R., & Haldar, J. (2021). Quaternary lipophilic chitosan and gelatin cross-linked antibacterial hydrogel effectively kills multidrug-resistant bacteria with minimal toxicity toward mammalian cells. Biomacromolecules, 22(2), 557–571. https://doi.org/10.1021/acs.biomac.0c01420
Bhattacharya, M., Wozniak, D. J., Stoodley, P., & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert Review of Anti-Infective Therapy, 13(12), 1499–1516. https://doi.org/10.1586/14787210.2015.1100533
Bobu, E., Nicu, R., Lupei, M., Ciolacu, F., & Desbrieres, J. (2011). Synthesis and characterization of n-alkyl chitosan for papermaking applications. Cellulose Chemistry and Technology, 45, 619–625.
Brandt, S. L., Putnam, N. E., Cassat, J. E., & Serezani, C. H. (2018). Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. The Journal of Immunology, 200(12), 3871–3880. https://doi.org/10.4049/jimmunol.1701574
Burnham, J. P., & Kollef, M. H. (2018). Treatment of severe skin and soft tissue infections: A review. Current Opinion in Infectious Diseases, 31(2), 113–119. https://doi.org/10.1097/QCO.0000000000000431
Ciciliati, M. A., Silva, M. F., Fernandes, D. M., Melo, M. A. C., Hechenleitner, A. A. W., & Pineda, E. A. G. (2015). Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Materials Letters, 159, 84–86. https://doi.org/10.1016/J.MATLET.2015.06.023
Cuero, R. G., Osuji, G., & Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc. Biotechnology Letters, 13(6), 441–444. https://doi.org/10.1007/BF01030998
Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968
Delgadillo-Armendariz, N. L., Rangel-Vazquez, N. A., Marquez-Brazon, E. A., & Gascue, B. R.-D. (2014). Interactions of chitosan/genipin hydrogels during drug delivery: A QSPR APPROACH. Química Nova, 37, 1503–1509. https://doi.org/10.5935/0100-4042.20140243
Dharmaraj, D., Krishnamoorthy, M., Rajendran, K., Karuppiah, K., Annamalai, J., Durairaj, K. R., Santhiyagu, P., & Ethiraj, K. (2021). Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology, 61, 102111. https://doi.org/10.1016/j.jddst.2020.102111
Djurišić, A. B., Leung, Y. H., Ng, A. M. C., Xu, X. Y., Lee, P. K. H., Degger, N., & Wu, R. S. S. (2015). Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26–44. https://doi.org/10.1002/smll.201303947
Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., El-Damhougy, B. K., & Abdelhai, F. (2015). Poly(vinyl alcohol)-hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in vitro Bio-Evaluations. Journal of the Brazilian Chemical Society, 26, 1466–1474. https://doi.org/10.5935/0103-5053.20150115
Feng, B.-H., & Peng, L.-F. (2012). Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydrate Polymers, 88(2), 576–582. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.01.002
Gavalyan, V. B. (2016). Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydrate Polymers, 145, 37–47. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.02.076
Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., Puente, YJ. D. R., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
Gudkov, S. V, Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641181. https://doi.org/10.3389/fphy.2021.641481
Hajizadeh, H., Peighambardoust, S. J., Peighambardoust, S. H., & Peressini, D. (2020). Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. Journal of Food Science, 85(4), 1193–1202. https://doi.org/10.1111/1750-3841.15079
Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258. https://doi.org/10.1016/J.IJBIOMAC.2020.09.037
Inbaraj, B. S., Chen, B. Y., Liao, C. W., & Chen, B. H. (2020). Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. International Journal of Biological Macromolecules, 161, 1484–1495. https://doi.org/10.1016/j.ijbiomac.2020.07.244
Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562
Kadiyala, U., Turali-Emre, E. S., Bahng, J. H., Kotov, N. A., Scott Vanepps, J., & VanEpps, J. S. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant: Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927–4939. https://doi.org/10.1039/c7nr08499d
Kajbafvala, A., Zanganeh, S., Kajbafvala, E., Zargar, H. R., Bayati, M. R., & Sadrnezhaad, S. K. (2010). Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. Journal of Alloys and Compounds, 497(1–2), 325–329. https://doi.org/10.1016/J.JALLCOM.2010.03.057
Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., & Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1), 38–47. https://doi.org/https://doi.org/10.1016/j.arabjc.2013.12.003
Karthikeyan, C., Varaprasad, K., Akbari-Fakhrabadi, A., Hameed, A. S. H., & Sadiku, R. (2020). Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydrate Polymers, 249, 116825. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116825
Khalilipour, A., & Paydayesh, A. (2019). Characterization of Polyvinyl Alcohol/ZnO Nanocomposite Hydrogels for Wound Dressings. Journal of Macromolecular Science, Part B, 58(2), 371–384. https://doi.org/10.1080/00222348.2018.1560936
Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M., AlOthman, Z. A., Ahmad, I., Ashraf, G. M., & Aliev, G. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6(1), 27689. https://doi.org/10.1038/srep27689
Kotov, N. A. (2010). Inorganic nanoparticles as protein mimics. Science, 330(6001), 188–189. https://doi.org/10.1126/science.1190094
Krishnaveni, R., & Thambidurai, S. (2013). Industrial method of cotton fabric finishing with chitosan-ZnO composite for anti-bacterial and thermal stability. Industrial Crops and Products, 47, 160–167. https://doi.org/10.1016/j.indcrop.2013.03.007
Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028
Li, L.-H., Deng, J.-C., Deng, H.-R., Liu, Z.-L., & Xin, L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydrate Research, 345(8), 994–998. https://doi.org/https://doi.org/10.1016/j.carres.2010.03.019
Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265. https://doi.org/10.1016/j.carbpol.2017.08.082
Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5
McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G., & Paton, J. C. (2011). A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLOS Pathogens, 7(11), e1002357.
Milionis, A., Tripathy, A., Donati, M., Sharma, C. S., Pan, F., Maniura-Weber, K., Ren, Q., & Poulikakos, D. (2020). Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Industrial and Engineering Chemistry Research, 59(32), 14323–14333. https://doi.org/10.1021/acs.iecr.0c01998
Moeini, A., Pedram, P., Makvandi, P., Malinconico, M., & D’Ayala, G. G. (2020). Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydrate Polymers, 233, 115839. https://doi.org/10.1016/j.carbpol.2020.115839
Mushtaq, F., Nazeer, M. A., Mansha, A., Zahid, M., Bhatti, H. N., Raza, Z. A., Yaseen, W., Rafique, A., & Irshad, R. (2022). Poly(Vinyl Alcohol) (PVA)-Based Treatment Technologies in the Remediation of Dye-Containing Textile Wastewater BT - Polymer Technology in Dye-containing Wastewater: Volume 2 (A. Khadir & S. S. Muthu, Eds.; pp. 1–21). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0886-6_1
Nasu, A., & Otsubo, Y. (2006). Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil. Journal of Colloid and Interface Science, 296(2), 558–564. https://doi.org/10.1016/j.jcis.2005.09.036
Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83(4), 1446–1456. https://doi.org/10.1016/J.CARBPOL.2010.11.004
Niño-Martínez, N., Oroco, M. F. S., Martínez-Castañón, G. A., Méndez, F. T., & Ruiz, F. (2019). Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. International Journal of Molecular Sciences, 20(11), 2808. https://doi.org/10.3390/ijms20112808
Paul, S., Jayan, A., Sasikumar, C. S., & Cherian, S. M. (2014). Extraction and Purification of Chitosan from Chitin Isolated from Sea Prawn (Fenneropenaeus indicus). Asian Journal of Pharmaceutical and Clinical Research, 7(4), 201–204.
Perelshtein, I., Ruderman, E., Perkas, N., Tzanov, T., Beddow, J., Joyce, E., Mason, T. J., Blanes, M., Mollá, K., Patlolla, A., Frenkel, A. I., & Gedanken, A. (2013). Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. Journal of Materials Chemistry B, 1(14), 1968–1976. https://doi.org/10.1039/C3TB00555K
Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
Rac-Rumijowska, O., Fiedot, M., Suchorska-Wozniak, P., & Teterycz, H. (2017). Synthesis of gold nanoparticles with different kinds of stabilizing agents. Proceedings of the International Spring Seminar on Electronics Technology, 2017, 1–6. https://doi.org/10.1109/ISSE.2017.8000972
Raza, Z. A., Khalil, S., Ayub, A., & Banat, I. M. (2020). Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research, 492, 108004. https://doi.org/https://doi.org/10.1016/j.carres.2020.108004
Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(213902), 2139021–2139023. https://doi.org/10.1063/1.2742324
Sahariah, P., Gaware, V. S., Lieder, R., Jónsdóttir, S., Hjálmarsdóttir, M. A., Sigurjonsson, O. E., & Másson, M. (2014). The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Marine Drugs, 12(8), 4635–4658. https://doi.org/10.3390/MD12084635
Singh, P., Kumar, R., & Singh, R. K. (2019). Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Industrial and Engineering Chemistry Research, 58(37), 17130–17163. https://doi.org/10.1021/acs.iecr.9b01561
Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145–151.
Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362S20180027
Wang, Y., Tan, X., Xi, C., & Phillips, K. S. (2018). Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. Npj Biofilms and Microbiomes, 4(1), 16. https://doi.org/10.1038/s41522-018-0060-7
Xia, J., Zhang, H., Yu, F., Pei, Y., & Luo, X. (2020). Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. ACS Applied Materials and Interfaces, 12(21), 24370–24379. https://doi.org/10.1021/acsami.0c05604
Zhong, Q., Tian, J., Liu, T., Guo, Z., Ding, S., & Li, H. (2018). Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Materials Letters, 212, 58–61. https://doi.org/10.1016/J.MATLET.2017.10.062
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Edmo Henrique Martins Cavalcante; Fernando Antônio Gomes da Silva Junior; Monica Aparecida Tomé Pereira; Paulo José Pereira; Mateus Matiuzzi da Costa; Helinando Pequeno de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.