Antibacterial activity of chitosan and zinc oxide impregnated in PVA-based membranes

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.40720

Keywords:

Membranes; Biomaterials; Surfaces and interfaces; Blends.

Abstract

The development of alternatives to conventional antibiotics against superbugs represents an important step to avoid the increasing resistance of bacteria observed in conventional treatments. Herein, it was evaluated the influence of different combinations of two active antibacterial components (chitosan and zinc oxide) and a host poly (vinyl alcohol - PVA) in membranes produced by the solvent casting technique. Those systems were evaluated in terms of the biofilm inactivation, kill-time assays and inhibition haloes against S. aureus (ATCC 25923) in membranes that must release reactive components while preserving their integrity and favoring the generation of reactive species to improve the antibacterial activity. The results suggest the potential of the combination of chitosan, zinc oxide and poly (vinyl alcohol) to inhibit the growth of S. aureus colonies since the PVA improved the dispersion of the components, whereas chitosan-ZnO chelate improves the mutual activity of the metal oxide and the natural polymer template.

References

Abdeen, Z. I., El Farargy, A. F., & Negm, N. A. (2018). Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation. Journal of Molecular Liquids, 250, 335–343. https://doi.org/https://doi.org/10.1016/j.molliq.2017.12.032

Abureesh, M. A., Oladipo, A. A., Mizwari, Z. M., & Berksel, E. (2018). Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug. International Journal of Biological Macromolecules, 116, 417–425. https://doi.org/10.1016/J.IJBIOMAC.2018.05.065

Ahmad Yusof, N. A., Mat Zain, N., & Pauzi, N. (2019). Synthesis of Chitosan/Zinc Oxide Nanoparticles Stabilized by Chitosan via Microwave Heating. Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 450. https://doi.org/10.9767/bcrec.14.2.3319.450-458

Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Investigation of Zinc Oxide-Loaded Poly(Vinyl Alcohol) Nanocomposite Films in Tailoring Their Structural, Optical and Mechanical Properties. Journal of Electronic Materials, 47(7), 3912–3926. https://doi.org/10.1007/s11664-018-6270-1

Aslam, M., Kalyar, M. A., & Raza, Z. A. (2019). Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips. Journal of Electronic Materials, 48(2), 1116–1121. https://doi.org/10.1007/s11664-018-6793-5

Aslam, M., Kalyar, M. A., & Raza, Z. A. (2021). Fabrication of nano-CuO-loaded PVA composite films with enhanced optomechanical properties. Polymer Bulletin, 78(3), 1551–1571. https://doi.org/10.1007/s00289-020-03173-9

Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955–1965. https://doi.org/10.1007/s00289-020-03194-4

Ayub, A., & Raza, Z. A. (2021). Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. International Journal of Biological Macromolecules, 192, 1196–1216. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.050

Ayub, A., Raza, Z. A., Majeed, M. I., Tariq, M. R., & Irfan, A. (2020). Development of sustainable magnetic chitosan biosorbent beads for kinetic remediation of arsenic contaminated water. International Journal of Biological Macromolecules, 163, 603–617. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.06.287

Barreto, M. S. R., Andrade, C. T., Azero, E. G., Paschoalin, V. M. F., & Del Aguila, E. M. (2017). Production of chitosan/zinc oxide complex by ultrasonic treatment with antibacterial activity. Journal of Bacteriology & Parasitology, 8(5), 1–7. https://doi.org/10.4172/2155-9597.1000330

Bhattacharjee, B., Ghosh, S., Mukherjee, R., & Haldar, J. (2021). Quaternary lipophilic chitosan and gelatin cross-linked antibacterial hydrogel effectively kills multidrug-resistant bacteria with minimal toxicity toward mammalian cells. Biomacromolecules, 22(2), 557–571. https://doi.org/10.1021/acs.biomac.0c01420

Bhattacharya, M., Wozniak, D. J., Stoodley, P., & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert Review of Anti-Infective Therapy, 13(12), 1499–1516. https://doi.org/10.1586/14787210.2015.1100533

Bobu, E., Nicu, R., Lupei, M., Ciolacu, F., & Desbrieres, J. (2011). Synthesis and characterization of n-alkyl chitosan for papermaking applications. Cellulose Chemistry and Technology, 45, 619–625.

Brandt, S. L., Putnam, N. E., Cassat, J. E., & Serezani, C. H. (2018). Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. The Journal of Immunology, 200(12), 3871–3880. https://doi.org/10.4049/jimmunol.1701574

Burnham, J. P., & Kollef, M. H. (2018). Treatment of severe skin and soft tissue infections: A review. Current Opinion in Infectious Diseases, 31(2), 113–119. https://doi.org/10.1097/QCO.0000000000000431

Ciciliati, M. A., Silva, M. F., Fernandes, D. M., Melo, M. A. C., Hechenleitner, A. A. W., & Pineda, E. A. G. (2015). Fe-doped ZnO nanoparticles: synthesis by a modified sol–gel method and characterization. Materials Letters, 159, 84–86. https://doi.org/10.1016/J.MATLET.2015.06.023

Cuero, R. G., Osuji, G., & Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc. Biotechnology Letters, 13(6), 441–444. https://doi.org/10.1007/BF01030998

Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968

Delgadillo-Armendariz, N. L., Rangel-Vazquez, N. A., Marquez-Brazon, E. A., & Gascue, B. R.-D. (2014). Interactions of chitosan/genipin hydrogels during drug delivery: A QSPR APPROACH. Química Nova, 37, 1503–1509. https://doi.org/10.5935/0100-4042.20140243

Dharmaraj, D., Krishnamoorthy, M., Rajendran, K., Karuppiah, K., Annamalai, J., Durairaj, K. R., Santhiyagu, P., & Ethiraj, K. (2021). Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology, 61, 102111. https://doi.org/10.1016/j.jddst.2020.102111

Djurišić, A. B., Leung, Y. H., Ng, A. M. C., Xu, X. Y., Lee, P. K. H., Degger, N., & Wu, R. S. S. (2015). Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26–44. https://doi.org/10.1002/smll.201303947

Fahmy, A., Kamoun, E. A., El-Eisawy, R., El-Fakharany, E. M., Taha, T. H., El-Damhougy, B. K., & Abdelhai, F. (2015). Poly(vinyl alcohol)-hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in vitro Bio-Evaluations. Journal of the Brazilian Chemical Society, 26, 1466–1474. https://doi.org/10.5935/0103-5053.20150115

Feng, B.-H., & Peng, L.-F. (2012). Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydrate Polymers, 88(2), 576–582. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.01.002

Gavalyan, V. B. (2016). Synthesis and characterization of new chitosan-based Schiff base compounds. Carbohydrate Polymers, 145, 37–47. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.02.076

Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., Puente, YJ. D. R., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

Gudkov, S. V, Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Frontiers in Physics, 9, 641181. https://doi.org/10.3389/fphy.2021.641481

Hajizadeh, H., Peighambardoust, S. J., Peighambardoust, S. H., & Peressini, D. (2020). Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. Journal of Food Science, 85(4), 1193–1202. https://doi.org/10.1111/1750-3841.15079

Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258. https://doi.org/10.1016/J.IJBIOMAC.2020.09.037

Inbaraj, B. S., Chen, B. Y., Liao, C. W., & Chen, B. H. (2020). Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. International Journal of Biological Macromolecules, 161, 1484–1495. https://doi.org/10.1016/j.ijbiomac.2020.07.244

Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562

Kadiyala, U., Turali-Emre, E. S., Bahng, J. H., Kotov, N. A., Scott Vanepps, J., & VanEpps, J. S. (2018). Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant: Staphylococcus aureus (MRSA). Nanoscale, 10(10), 4927–4939. https://doi.org/10.1039/c7nr08499d

Kajbafvala, A., Zanganeh, S., Kajbafvala, E., Zargar, H. R., Bayati, M. R., & Sadrnezhaad, S. K. (2010). Microwave-assisted synthesis of narcis-like zinc oxide nanostructures. Journal of Alloys and Compounds, 497(1–2), 325–329. https://doi.org/10.1016/J.JALLCOM.2010.03.057

Kamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., & Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1), 38–47. https://doi.org/https://doi.org/10.1016/j.arabjc.2013.12.003

Karthikeyan, C., Varaprasad, K., Akbari-Fakhrabadi, A., Hameed, A. S. H., & Sadiku, R. (2020). Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process. Carbohydrate Polymers, 249, 116825. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116825

Khalilipour, A., & Paydayesh, A. (2019). Characterization of Polyvinyl Alcohol/ZnO Nanocomposite Hydrogels for Wound Dressings. Journal of Macromolecular Science, Part B, 58(2), 371–384. https://doi.org/10.1080/00222348.2018.1560936

Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., Baig, U., Zaheer, M. R., Alam, M. M., Khan, A. M., AlOthman, Z. A., Ahmad, I., Ashraf, G. M., & Aliev, G. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6(1), 27689. https://doi.org/10.1038/srep27689

Kotov, N. A. (2010). Inorganic nanoparticles as protein mimics. Science, 330(6001), 188–189. https://doi.org/10.1126/science.1190094

Krishnaveni, R., & Thambidurai, S. (2013). Industrial method of cotton fabric finishing with chitosan-ZnO composite for anti-bacterial and thermal stability. Industrial Crops and Products, 47, 160–167. https://doi.org/10.1016/j.indcrop.2013.03.007

Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028

Li, L.-H., Deng, J.-C., Deng, H.-R., Liu, Z.-L., & Xin, L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydrate Research, 345(8), 994–998. https://doi.org/https://doi.org/10.1016/j.carres.2010.03.019

Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265. https://doi.org/10.1016/j.carbpol.2017.08.082

Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5

McDevitt, C. A., Ogunniyi, A. D., Valkov, E., Lawrence, M. C., Kobe, B., McEwan, A. G., & Paton, J. C. (2011). A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLOS Pathogens, 7(11), e1002357.

Milionis, A., Tripathy, A., Donati, M., Sharma, C. S., Pan, F., Maniura-Weber, K., Ren, Q., & Poulikakos, D. (2020). Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Industrial and Engineering Chemistry Research, 59(32), 14323–14333. https://doi.org/10.1021/acs.iecr.0c01998

Moeini, A., Pedram, P., Makvandi, P., Malinconico, M., & D’Ayala, G. G. (2020). Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydrate Polymers, 233, 115839. https://doi.org/10.1016/j.carbpol.2020.115839

Mushtaq, F., Nazeer, M. A., Mansha, A., Zahid, M., Bhatti, H. N., Raza, Z. A., Yaseen, W., Rafique, A., & Irshad, R. (2022). Poly(Vinyl Alcohol) (PVA)-Based Treatment Technologies in the Remediation of Dye-Containing Textile Wastewater BT - Polymer Technology in Dye-containing Wastewater: Volume 2 (A. Khadir & S. S. Muthu, Eds.; pp. 1–21). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0886-6_1

Nasu, A., & Otsubo, Y. (2006). Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil. Journal of Colloid and Interface Science, 296(2), 558–564. https://doi.org/10.1016/j.jcis.2005.09.036

Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydrate Polymers, 83(4), 1446–1456. https://doi.org/10.1016/J.CARBPOL.2010.11.004

Niño-Martínez, N., Oroco, M. F. S., Martínez-Castañón, G. A., Méndez, F. T., & Ruiz, F. (2019). Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. International Journal of Molecular Sciences, 20(11), 2808. https://doi.org/10.3390/ijms20112808

Paul, S., Jayan, A., Sasikumar, C. S., & Cherian, S. M. (2014). Extraction and Purification of Chitosan from Chitin Isolated from Sea Prawn (Fenneropenaeus indicus). Asian Journal of Pharmaceutical and Clinical Research, 7(4), 201–204.

Perelshtein, I., Ruderman, E., Perkas, N., Tzanov, T., Beddow, J., Joyce, E., Mason, T. J., Blanes, M., Mollá, K., Patlolla, A., Frenkel, A. I., & Gedanken, A. (2013). Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. Journal of Materials Chemistry B, 1(14), 1968–1976. https://doi.org/10.1039/C3TB00555K

Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142

Rac-Rumijowska, O., Fiedot, M., Suchorska-Wozniak, P., & Teterycz, H. (2017). Synthesis of gold nanoparticles with different kinds of stabilizing agents. Proceedings of the International Spring Seminar on Electronics Technology, 2017, 1–6. https://doi.org/10.1109/ISSE.2017.8000972

Raza, Z. A., Khalil, S., Ayub, A., & Banat, I. M. (2020). Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydrate Research, 492, 108004. https://doi.org/https://doi.org/10.1016/j.carres.2020.108004

Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(213902), 2139021–2139023. https://doi.org/10.1063/1.2742324

Sahariah, P., Gaware, V. S., Lieder, R., Jónsdóttir, S., Hjálmarsdóttir, M. A., Sigurjonsson, O. E., & Másson, M. (2014). The effect of substituent, degree of acetylation and positioning of the cationic charge on the antibacterial activity of quaternary chitosan derivatives. Marine Drugs, 12(8), 4635–4658. https://doi.org/10.3390/MD12084635

Singh, P., Kumar, R., & Singh, R. K. (2019). Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Industrial and Engineering Chemistry Research, 58(37), 17130–17163. https://doi.org/10.1021/acs.iecr.9b01561

Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145–151.

Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362S20180027

Wang, Y., Tan, X., Xi, C., & Phillips, K. S. (2018). Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. Npj Biofilms and Microbiomes, 4(1), 16. https://doi.org/10.1038/s41522-018-0060-7

Xia, J., Zhang, H., Yu, F., Pei, Y., & Luo, X. (2020). Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. ACS Applied Materials and Interfaces, 12(21), 24370–24379. https://doi.org/10.1021/acsami.0c05604

Zhong, Q., Tian, J., Liu, T., Guo, Z., Ding, S., & Li, H. (2018). Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Materials Letters, 212, 58–61. https://doi.org/10.1016/J.MATLET.2017.10.062

Downloads

Published

14/03/2023

How to Cite

CAVALCANTE, E. H. M. .; SILVA JUNIOR, F. A. G. da .; PEREIRA, M. A. T. .; PEREIRA, P. J. .; COSTA, M. M. da .; OLIVEIRA, H. P. de . Antibacterial activity of chitosan and zinc oxide impregnated in PVA-based membranes. Research, Society and Development, [S. l.], v. 12, n. 3, p. e23812340720, 2023. DOI: 10.33448/rsd-v12i3.40720. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40720. Acesso em: 26 apr. 2024.

Issue

Section

Exact and Earth Sciences