Evaluation of two experimental models of deep venous thrombosis: venous stasis and endothelial injury





Venous thrombosis; Animal models; Ferric chloride; Ligature.


Deep vein thrombosis is an important cause of morbidity and mortality worldwide, especially in the hospital environment, justifying its treatment and also prophylaxis when necessary. The methods of inducing deep vein thrombosis in animals are fundamental for the study of the pathophysiology of the disease, as well as for testing antithrombotic drugs. The objective in this work was to evaluate and compare two methods of inducing deep vein thrombosis in rats: the venous stasis model, widely described in the literature, and the endothelial lesion model, with few studies, especially in rats. male Wistar rats were used for induction of deep vein thrombosis. For stasis, the inferior vena cava was dissected and ligated for 3 hours and after the segment with the vein containing the thrombus was removed. For the endothelial lesion model, a piece of filter paper soaked in FeCl3 was applied for 1 minute and the segment was evaluated after 1 hour. In both models, the wet weight and the area of occlusion were evaluated. For the wet weight, it was obtained by comparing the methods of endothelial injury and stasis, respectively: 17.7mg (±3.0mg) vs. 2.34mg (±1.8mg) with P<0.001. For the area of occlusion, comparing the methods of endothelial injury and stasis, respectively: 85.11% (±9.67%) vs.40.83% (±33.14%), with P<0.05. In all variables, the endothelial lesion method had better results than the venous stasis method, proving to be more reproducible.


Albadawi, H., Witting, A. A., Pershad, Y., Wallace, A., Fleck, A. R., Hoang, P., Khademhosseini, A., & Oklu, R. (2017). Animal models of venous thrombosis. Cardiovascular diagnosis and therapy, 7 (Suppl 3), S197–S206. https://doi.org/10.21037/cdt.2017.08.10

Alessio, A. M., Beltrame, M. P., Nascimento, M. C., Vicente, C. P., de Godoy, J. A., Silva, J. C., Bittar, L. F., Lorand-Metze, I., de Paula, E. V., & Annichino-Bizzacchi, J. M. (2013). Circulating progenitor and mature endothelial cells in deep vein thrombosis. International journal of medical sciences, 10(12), 1746–1754. https://doi.org/10.7150/ijms.6887

Barr, J. D., Chauhan, A. K., Schaeffer, G. V., Hansen, J. K., & Motto, D. G. (2013). Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood, 121(18), 3733–3741. https://doi.org/10.1182/blood-2012-11-468983

Brill, A., Fuchs, T. A., Chauhan, A. K., Yang, J. J., De Meyer, S. F., Köllnberger, M., Wakefield, T. W., Lämmle, B., Massberg, S., & Wagner, D. D. (2011). von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood, 117(4), 1400–1407. https://doi.org/10.1182/blood-2010-05-287623.

Ciciliano, J. C., Sakurai, Y., Myers, D. R., Fay, M. E., Hechler, B., Meeks, S., Li, R., Dixon, J. B., Lyon, L. A., Gachet, C., & Lam, W. A. (2015). Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood, 126(6), 817–824. https://doi.org/10.1182/blood-2015-02-628594

Cohoon, K. P., Leibson, C. L., Ransom, J. E., Ashrani, A. A., Petterson, T. M., Long, K. H., Bailey, K. R., & Heit, J. A. (2015). Costs of venous thromboembolism associated with hospitalization for medical illness. The American journal of managed care, 21(4), e255–e263.

Couture, L., Richer, L. P., Cadieux, C., Thomson, C. M., & Hossain, S. M. (2011). An optimized method to assess in vivo efficacy of antithrombotic drugs using optical coherence tomography and a modified Doppler flow system. Journal of pharmacological and toxicological methods, 64(3), 264–268. https://doi.org/10.1016/j.vascn.2011.09.001

Cui, G., Shan, L., Guo, L., Keung Chu, I., Li, G., Quan, Q., Zhao, Y., Meng Chong, C., Zhang, Z., Yu, P., Hoi, M. P., Sun, Y., Wang, Y., & Lee, S. M. (2015). Corrigendum: Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy. Scientific reports, 5, 13509. https://doi.org/10.1038/srep13509

Dai, B., Li, L., Li, Q., Song, X., Chen, D., Dai, J., Yao, Y., Yan, W., Teng, H., Yang, F., Xu, Z., & Jiang, Q. (2017). Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis, 28(5), 398–406. https://doi.org/10.1097/MBC.0000000000000629

Diaz, J. A., Obi, A. T., Myers, D. D., Jr, Wrobleski, S. K., Henke, P. K., Mackman, N., & Wakefield, T. W. (2012). Critical review of mouse models of venous thrombosis. Arteriosclerosis, thrombosis, and vascular biology, 32(3), 556–562. https://doi.org/10.1161/ATVBAHA.111.244608.

Diaz, J. A., Saha, P., Cooley, B., Palmer, O. R., Grover, S. P., Mackman, N., Wakefield, T. W., Henke, P. K., Smith, A., & Lal, B. K. (2019). Choosing a Mouse Model of Venous Thrombosis. Arteriosclerosis, thrombosis, and vascular biology, 39(3), 311–318. https://doi.org/10.1161/ATVBAHA.118.311818

Fernandez, M. M., Hogue, S., Preblick, R., & Kwong, W. J. (2015). Review of the cost of venous thromboembolism. Clinic Economics and outcomes research: CEOR, 7, 451–462. https://doi.org/10.2147/CEOR.S85635.

Frisbie J. H. (2005). An animal model for venous thrombosis and spontaneous pulmonary embolism. Spinal cord, 43(11), 635–639. https://doi.org/10.1038/sj.sc.3101770.

Gustafsson, D., Nyström, J., Carlsson, S., Bredberg, U., Eriksson, U., Gyzander, E., Elg, M., Antonsson, T., Hoffmann, K., Ungell, A., Sörensen, H., Någård, S., Abrahamsson, A., & Bylund, R. (2001). The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thrombosis research, 101(3), 171–181. https://doi.org/10.1016/s0049-3848(00)00399-6.

Gong, G., Qin, Y., & Huang, W. (2011). Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine: international journal of phytotherapy and phytopharmacology, 18(6), 458–463. https://doi.org/10.1016/j.phymed.2010.08.015.

Heit, J. A., Spencer, F. A., & White, R. H. (2016). The epidemiology of venous thromboembolism. Journal of thrombosis and thrombolysis, 41(1), 3–14. https://doi.org/10.1007/s11239-015-1311-6.

Henke, P. K., Varma, M. R., Moaveni, D. K., Dewyer, N. A., Moore, A. J., Lynch, E. M., Longo, C., Deatrick, C. B., Kunkel, S. L., Upchurch, G. R., Jr, & Wakefield, T. W. (2007). Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thrombosis and haemostasis, 98(5), 1045–1055.

Hennan, J. K., Morgan, G. A., Swillo, R. E., Antrilli, T. M., Mugford, C., Vlasuk, G. P., Gardell, S. J., & Crandall, D. L. (2008). Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. Journal of thrombosis and haemostasis: JTH, 6(9), 1558–1564. https://doi.org/10.1111/j.1538-7836.2008.03063.x.

Herbert, J. M., Tissinier, A., Defreyn, G., & Maffrand, J. P. (1993). Inhibitory effect of clopidogrel on platelet adhesion and intimal proliferation after arterial injury in rabbits. Arteriosclerosis and thrombosis: a journal of vascular biology, 13(8), 1171–1179. https://doi.org/10.1161/01.atv.13.8.1171

Himber, J., Wohlgensinger, C., Roux, S., Damico, L. A., Fallon, J. T., Kirchhofer, D., Nemerson, Y., & Riederer, M. A. (2003). Inhibition of tissue factor limits the growth of venous thrombus in the rabbit. Journal of thrombosis and haemostasis: JTH, 1(5), 889–895. https://doi.org/10.1046/j.1538-7836.2003.00110.x.

Jagadeeswaran, P., Cooley, B. C., Gross, P. L., & Mackman, N. (2016). Animal Models of Thrombosis from Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circulation research, 118(9), 1363–1379. https://doi.org/10.1161/CIRCRESAHA.115.306823.

Jin, Q. Q., Sun, J. H., Du, Q. X., Lu, X. J., Zhu, X. Y., Fan, H. L., Hölscher, C., & Wang, Y. Y. (2017). Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. International journal of molecular medicine, 40(4), 1019–1028. https://doi.org/10.3892/ijmm.2017.3105

Kurz, K. D., Main, B. W., & Sandusky, G. E. (1990). Rat model of arterial thrombosis induced by ferric chloride. Thrombosis research, 60(4), 269–280. https://doi.org/10.1016/0049-3848(90)90106-m.

Li, H., Zhang, B., Lu, S., Ji, D. G., Ding, M., Ye, Y. S., & Sun, D. J. (2019). siRNA-mediated silencing of PAI-1 gene acts as a promoter over the recanalization of endothelial progenitor cells in rats with venous thrombosis. Journal of cellular physiology, 234(11), 19921–19932. https://doi.org/10.1002/jcp.28590

Liu, H., Li, P., Lin, J., Chen, W., Guo, H., Lin, J., Liu, J., Lu, Z., Yao, X., Chen, Y., & Lin, B. (2019). Danhong Huayu Koufuye prevents venous thrombosis through antiinflammation via Sirtuin 1/NF-κB signaling pathway. Journal of ethnopharmacology, 241, 111975. https://doi.org/10.1016/j.jep.2019.111975.

Myers, D. D., Jr, Henke, P. K., Wrobleski, S. K., Hawley, A. E., Farris, D. M., Chapman, A. M., Knipp, B. S., Thanaporn, P., Schaub, R. G., Greenfield, L. J., & Wakefield, T. W. (2002). P-selectin inhibition enhances thrombus resolution and decreases vein wall fibrosis in a rat model. Journal of vascular surgery, 36(5), 928–938. https://doi.org/10.1067/mva.2002.128636.

Nakata, N., & Kira, Y. (2016). Effects of Preoperative Glycyrrhizin Infusion for the Prevention of Venous Thrombosis on the Tissue Expression of Antithrombin in a Rat Model. Annals of vascular diseases, 9(2), 95–101. https://doi.org/10.3400/avd.oa.16-00009.

Pazzini, C., Marcato, P. D., Prado, L. B., Alessio, A. M., Höehr, N. F., Montalvão, S., Paixão, D., Durán, N., & Annichino-Bizzacchi, J. M. (2015). Polymeric Nanoparticles of Enoxaparin as a Delivery System: In Vivo Evaluation in Normal Rats and in a Venous Thrombosis Rat Model. Journal of nanoscience and nanotechnology, 15(7), 4837–4843. https://doi.org/10.1166/jnn.2015.9816

Prado, L. B., Huber, S. C., Barnabé, A., Bassora, F. D. S., Paixão, D. S., Duran, N., Annichino-Bizzacchi, J. M. (2017) Characterization of PCL and Chitosan Nanoparticles as Carriers of Enoxaparin and Its Antithrombotic Effect in Animal Models of Venous Thrombosis. Journal of Nanotechnology, 1-7, https://doi.org/10.1155/2017/4925495

Parry, T. J., Huang, Z., Chen, C., Connelly, M. A., Perzborn, E., Andrade-Gordon, P., & Damiano, B. P. (2011). Arterial antithrombotic activity of rivaroxaban, an orally active factor Xa inhibitor, in a rat electrolytic carotid artery injury model of thrombosis. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis, 22(8), 720–726. https://doi.org/10.1097/MBC.0b013e32834cb30e

Peternel, L., Drevensek, G., Cerne, M., Stalc, A., Stegnar, M., & Budihna, M. V. (2005). Evaluation of two experimental venous thrombosis models in the rat. Thrombosis research, 115(6), 527–534. https://doi.org/10.1016/j.thromres.2004.10.007.

Reyers, I., Mussoni, L., Donati, M. B., & de Gaetano, G. (1980). Failure of aspirin at different doses to modify experimental thrombosis in rats. Thrombosis research, 18(5), 669–674. https://doi.org/10.1016/0049-3848(80)90221-2.

Saitoh, M., Kaku, S., Funatsu, T., Koshio, H., Ishihara, T., Hirayama, F., Kawasaki, T., Sasamata, M. (2007). Comparison of YM50, an Oral, Direct Factor Xa Inhibitor, with Other Antithrombotic Agents in Rodent Venous and Arterial Thrombosis Models. Blood, 110(11):3155. https://doi.org/10.1182/blood.V110.11.3155.3155

Schoenwaelder, S. M., & Jackson, S. P. (2015). Ferric chloride thrombosis model: unraveling the vascular effects of a highly corrosive oxidant. Blood, 126(24): 2652-2653. https://doi.org/10.1182/blood-2015-09-668384.

Sood, V., Luke, C., Miller, E., Mitsuya, M., Upchurch, G. R., Jr, Wakefield, T. W., Myers, D. D., & Henke, P. K. (2010). Vein wall remodeling after deep vein thrombosis: differential effects of low molecular weight heparin and doxycycline. Annals of vascular surgery, 24(2), 233–241. https://doi.org/10.1016/j.avsg.2009.11.002

Tien, A. J., Chueh, T. H., Hsia, C. P., & Chien, C. T. (2016). Monascus Adlay and Monacolin K Attenuates Arterial Thrombosis in Rats through the Inhibition of ICAM-1 and Oxidative Stress. Kidney & blood pressure research, 41(6), 815–827. https://doi.org/10.1159/000452584

van Giezen, J. J., Berntsson, P., Zachrisson, H., & Björkman, J. A. (2009). Comparison of ticagrelor and thienopyridine P2Y (12) binding characteristics and antithrombotic and bleeding effects in rat and dog models of thrombosis/hemostasis. Thrombosis research, 124(5), 565–571. https://doi.org/10.1016/j.thromres.2009.06.029.

von Brühl, M. L., Stark, K., Steinhart, A., Chandraratne, S., Konrad, I., Lorenz, M., Khandoga, A., Tirniceriu, A., Coletti, R., Köllnberger, M., Byrne, R. A., Laitinen, I., Walch, A., Brill, A., Pfeiler, S., Manukyan, D., Braun, S., Lange, P., Riegger, J., Ware, J., Massberg, S. (2012). Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. The Journal of experimental medicine, 209(4), 819–835. https://doi.org/10.1084/jem.20112322.

Xin, G., Wei, Z., Ji, C., Zheng, H., Gu, J., Ma, L., Huang, W., Morris-Natschke, S. L., Yeh, J. L., Zhang, R., Qin, C., Wen, L., Xing, Z., Cao, Y., Xia, Q., Li, K., Niu, H., Lee, K. H., & Huang, W. (2017). Xanthohumol isolated from Humulus lupulus prevents thrombosis without increased bleeding risk by inhibiting platelet activation and mtDNA release. Free radical biology & medicine, 108, 247–257. https://doi.org/10.1016/j.freeradbiomed.2017.02.018.

Wakefield, T. W., Wrobleski, S. K., Sarpa, M. S., Taylor, F. B., Jr, Esmon, C. T., Cheng, A., & Greenfield, L. J. (1991). Deep venous thrombosis in the baboon: an experimental model. Journal of vascular surgery, 14(5), 588–598. https://doi.org/10.1067/mva.1991.32030.

Wang, X., Cheng, Q., Xu, L., Feuerstein, G. Z., Hsu, M. Y., Smith, P. L., Seiffert, D. A., Schumacher, W. A., Ogletree, M. L., & Gailani, D. (2005). Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. Journal of thrombosis and haemostasis: JTH, 3(4), 695–702. https://doi.org/10.1111/j.1538-7836.2005.01236.x.

Wang, X., Smith, P. L., Hsu, M. Y., Ogletree, M. L., & Schumacher, W. A. (2006). Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. Journal of thrombosis and haemostasis: JTH, 4(2), 403–410. https://doi.org/10.1111/j.1538-7836.2006.01703.x.

Wong, P. C., Watson, C. A., Crain, J. E., Luettgen, J. M., Ogletree, M. L., Wexler, R. R., Lam, P. Y. S., Pinto, D. J., Knabb, R. M. (2006). Effects of the Factor Xa Inhibitor Apixaban on Venous Thrombosis and Hemostasis in Rabbits. Blood. 108 (11): 917. https://doi.org/10.1182/blood.V108.11.917.917.

Wong, P. C., Crain, E. J., Xin, B., Wexler, R. R., Lam, P. Y., Pinto, D. J., Luettgen, J. M., & Knabb, R. M. (2008). Apixaban, an oral, direct and highly selective factor Xa inhibitor: in vitro, antithrombotic and antihemostatic studies. Journal of thrombosis and haemostasis: JTH, 6(5), 820–829. https://doi.org/10.1111/j.1538-7836.2008.02939.x.

Zhou, J., May, L., Liao, P., Gross, P. L., & Weitz, J. I. (2009). Inferior vena cava ligation rapidly induces tissue factor expression and venous thrombosis in rats. Arteriosclerosis, thrombosis, and vascular biology, 29(6), 863–869. https://doi.org/10.1161/ATVBAHA.109.185678.



How to Cite

SANTOS, A. J. de A.; LOPES, C. E. R. .; ALESSIO JUNIOR, L. E.; PAIM, N. P. .; PINTO, K. F. da C. S. .; BERBER, R. C. A. .; ALESSIO, A. M. . Evaluation of two experimental models of deep venous thrombosis: venous stasis and endothelial injury. Research, Society and Development, [S. l.], v. 12, n. 4, p. e15612440975, 2023. DOI: 10.33448/rsd-v12i4.40975. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40975. Acesso em: 6 jun. 2023.



Health Sciences