Studies in chemistry education under the perspective of the animal issue: a review on the international literature
DOI:
https://doi.org/10.33448/rsd-v12i4.40995Keywords:
Chemistry education; Animal ethics; Environmental chemistry; Nutrition.Abstract
Guided by the questioning about how issues related to animals are addressed in research aimed at teaching chemistry, we conducted a review in international journals in science, chemistry, education and animal ethics, seeking to identify a possible dialogue between the themes. Highlighting the novelty of these possible relations, the objective was to assemble a panoramic impression of it, assuming that inserting the animal theme in chemistry classes would improve learning, the development of values generally associated with a critical citizen, and would promote significant practices linked to the questioning of reality. In line with the themes of the works found, we built a theoretical basis on the issue between animal consumption and the future of the environment, followed by the methodology and analysis of the selected articles, divided into three categories: environmental chemistry as driving issue to construct scientific concepts, discussions on food and nutrition through a scientific view, and introduction of concepts, analysis and methods through food chemistry. The analyzed texts brought several aspects of the investigated relations, dealing with both food health and environmental problems. Along with that, they explored numerous pedagogical possibilities in order to raise awareness and make the teaching-learning process more attractive and effective. Among the conclusions, there is that animal ethics, through its various aspects, is either not contemplated or appears in a veiled way by publications in the area of chemistry education. We recognize that there is a long way to go in search of a new perception.
References
Arruzzo, R. C., Cunha, L. D., & Santos, L. N. (2022). Relações territoriais entre os povos indígenas e agronegócio no Brasil: conflitos e resistências. Rev. Tamoios, 18(1), 165-185. https://doi.org/10.12957/tamoios.2022.63879
Barbiric, D., Tribe, L., & Soriano, R. (2014). Computational chemistry laboratory: Calculating the energy content of food applied to a real-life problem. Journal of Chemical Education, 92(5), 881-885. http://dx.doi.org/10.1021/ed2008894
Bell, P. (2014). Design of a food chemistry-themed course for nonscience majors. Journal of Chemical Education, 91(10), 1631-1636. http://dx.doi.org/10.1021/ed4003404
Bendinskas, K., Weber, B., Nsouli Tamara, N., Hoangvy V., Joyce Carolyn, N., & Vadoud, J. T. W. (2014). A teaching laboratory for comprehensive lipid characterization from food samples. Journal of Chemical Education, 91(10), 1697-1701. http://dx.doi.org/10.1021/ed400586z
Besson, U., & Ambrosis, A. (2013). Teaching energy concepts by working on themes of cultural and environmental value. Science & Education, 23, 1309–1338. http://dx.doi.org/10.1007/s11191-013-9592-7
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. Portella, M., & Soares, M. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://doi.org/10.15210/jonah.v10i5.19924
Cheng, S. C., Ziffle, V. E., & King, R. C. (2020). Innovative food laboratory for a chemistry of food and cooking course. Journal of Chemical Education, 97(3), 659-667. http://dx.doi.org/10.1021/acs.jchemed.9b00465
Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356(6335), 260-264. http://dx.doi.org/10.1126/science.aal2011
Faustino, C., Bettencourt, A. F., & Alfaia António, P. L. (2015). Introducing students to rheological classification of foods, cosmetics, and pharmaceutical excipients using common viscous materials. Journal of Chemical Education, 92(5), 936-939. http://dx.doi.org/10.1021/ed4008364
Ferreira, J. E. V., Miranda, R. M., Figueiredo, A. F., Barbosa, J. P., & Brasil, E. M. (2016). Box-and-whisker plots applied to food chemistry. Journal of Chemical Education, 93(12), 2026-2032. http://dx.doi.org/10.1021/acs.jchemed.6b00300
Franco-Mariscal, A. J. (2018). Discovering the chemical elements in food. Journal of Chemical Education, 95(3), 403-409. http://dx.doi.org/10.1021/acs.jchemed.7b00218
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399). http://dx.doi.org/10.1126/science.aam5324
Lasker, G. A., Mellor, K. E., Mullins, M. L., Nesmith, S. M., & Simcox, N. J. (2017). Social and environmental justice in the chemistry classroom. Journal of Chemical Education, 94(8), 983-987. http://dx.doi.org/10.1021/acs.jchemed.6b00968
Lima, M., Costa, R., Lameiras, J., & Botelho, G. (2021). Alimentação à base de plantas: uma revisão narrativa. Acta Portuguesa de Nutrição, 26, 46-52. http://dx.doi.org/10.21011/apn.2021.2607
Low, P., et al. (2012). The Cambridge declaration on consciousness. https://philiplow.foundation/data/uploads/cambridge/CambridgeDeclarationOnConsciousness.pdf. Last accessed at March 20th, 2023.
Macedo, A. N., Mathiaparanam, S., Ly, R., & Britz-McKibbin, P. (2018). Surveying iodine nutrition using kinetic spectrophotometry: An integrative laboratory experiment in analytical chemistry for population health. Journal of Chemical Education, 95(6), 1029-1034. http://dx.doi.org/10.1021/acs.jchemed.7b00710
Miles, D. T., & Borchardt, A. C. (2014). Laboratory development and lecture renovation for a science of food and cooking course. Journal of Chemical Education, 91(10), 1637-1642. http://dx.doi.org/10.1021/ed5003256
Niece, B. K., & Hauri, J. F. (2013). Determination of mercury in fish: a low-cost implementation of cold-vapor atomic absorbance for the undergraduate environmental chemistry laboratory. Journal of Chemical Education, 90(4), 487-489. http://dx.doi.org/10.1021/ed300471w
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992. http://dx.doi.org/10.1126/science.aaq0216
Potteiger, S. E., & Belanger, J. M. (2015). Phospholipids, dietary supplements, and chicken eggs: An inquiry-based exercise using thin-layer chromatography. Journal of Chemical Education, 92(5), 896-899. http://dx.doi.org/10.1021/ed5002043
Regan, T. (2004). Empty cages: Facing the challenge of animal rights. Rowman & Littlefield publishers.
Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518-522. http://dx.doi.org/10.1038/nature13959
Xu, C., Jiang Danli, L. J., & Cai Longfei. (2018). Cross channel thread-based microfluidic device for separation of food dyes. Journal of Chemical Education, 95(6), 1000-1003. http://dx.doi.org/10.1021/acs.jchemed.7b00784
Wiblom, J., Andrée, M., & Rundgren, C-J. (2020). Navigating alarming media messages about nutrition and health: How students engage in critical examination of science in news media. Science & Education, 29(1), 75-100. http://dx.doi.org/10.1007/s11191-019-00099-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Karine Gabrielle Fernandes; Gustavo Dias-Silva; Ivoni Freitas-Reis; Rafael Arromba de Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.