Biomass production and chlorophyll contents of cover crops in compacted soils




Consortium; Urochloa ruziziensis; Panicum maximum; Corn; Physiological changes.


Soil compaction is one of the obstacles to grain production in the cerrado, and may influence biomass production and physiological changes, such as chlorophyll production, in cover crops used to minimize compaction damage and soil protection. Thus, the objective was to evaluate the effect of soil compaction on the production of biomass and chlorophyll a, b and total contents of cover crops. The experiment was carried out in a greenhouse at the University of Rio Verde. The treatments were established by a 4 x 2 factorial scheme, being Urochloa ruziziensis, Panicum maximum – BRS zuri, maize intercropped with U. ruziziensis and single maize, cultivated in soil with and without compaction. Soil compaction reduced the biomass of all cover crops. Maize alone and intercropped with U. ruziziensis grown in soil without compaction provided the soil with a greater amount of surface biomass (shoot and total dry mass), while maize intercropped with U. ruziziensis in compacted soil provided greater dry mass of roots. Comparing the contents of chlorophyll a, b and total within the same species, it is observed that there was no increase in the chlorophyll content in terms of soil compaction. Therefore, it is concluded that soil compaction impairs the development of biomass, but does not change the chlorophyll content of cover crops.


Abdalla, M., Hastings, A., Cheng, K., Yue, Q., Chadwick, D., Espenberg, M., ... & Smith, P. (2019). A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Global change biology, 25(8), 2530-2543.

Adetunji, A. T., Ncube, B., Mulidzi, R., & Lewu, F. B. (2020). Management impact and benefit of cover crops on soil quality: A review. Soil and Tillage Research, 204, 104717.

Bhering, L. L. (2017). Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology, 17, 187-190.

Castioni, G. A., de Lima, R. P., Cherubin, M. R., Bordonal, R. O., Rolim, M. M., & Carvalho, J. L. (2021). Machinery traffic in sugarcane straw removal operation: Stress transmitted and soil compaction. Soil and Tillage Research, 213, 105122.

Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford bulletin of economics and statistics, 70, 927-939.

Embrapa. (2015). Cultivo do milho. Sistemas de produção Embrapa. (9a ed.),

Embrapa. (2022). Brasil cria a sua primeira cultivar do capim Brachiaria ruziziensis.

Friendly, M., & Fox, J. Candisc: Visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0.2017.

Germipasto. (2023). BRS ZURI.

Khalilzadeh, Z., & Wang, L. (2022). Corn planting and harvest scheduling under storage capacity and growing degree units uncertainty. Scientific Reports, 12(1), 22482.

Lal, R., & Logan, T. J. (2018). Agricultural activities and greenhouse gas emissions from soils of the tropics. In: Lal, R., Kimble, J. M., Levine, E., & Stewart, B.A. In Soil management and greenhouse effect, CRC Press, 1, 293-307.

Lamichhane, J. R., Alletto, L., Cong, W. F., Dayoub, E., Maury, P., Plaza-Bonilla, D., Reckling, M., Saia, S., Soltani, E., Tison, G., & Debaeke, P. (2023). Relay cropping for sustainable intensification of agriculture across temperate regions: Crop management challenges and future research priorities. Field Crops Research, 291, 108795.

Lynch, J. P., Strock, C. F., Schneider, H. M., Sidhu, J. S., Ajmera, I., Galindo-Castañeda, T., Klein, S. P., & Hanlon, M. T. (2021). Root anatomy and soil resource capture. Plant and Soil, 466, 21-63.

Malavolta, E. (1980). Elementos de nutrição mineral de plantas. São Paulo: Ceres, 251 p.

Miranda, K. F. G., Torres, J. L. R., Charlo, H. C. D. O., Junior, V. O., Favaro, J. H. D. S., & de Souza, Z. M. (2020). Sweet corn in no-tillage system on cover crop residues in the Brazilian Cerrado. Australian Journal of Crop Science, 14(6), 947-952.

Momesso, L., Crusciol, C. A., Leite, M. F., Bossolani, J. W., & Kuramae, E. E. (2022). Forage grasses steer soil nitrogen processes, microbial populations, and microbiome composition in a long-term tropical agriculture system. Agriculture, Ecosystems & Environment, 323, 107688.

Morales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminário, A., Soba, D., Mariem, S. B., Garroga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9(1), 88.

Mores, G. D. V., Dewes, H., Talamini, E., Vieira-Filho, J. E. R., Casagranda, Y. G., Malafaia, G. C., Costa, C., Spanhol-Finocchio., & Zhang, D. (2022). A Longitudinal Study of Brazilian Food Production Dynamics. Agriculture, 12(11), 1811.

Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21, 101326.

Nogueira, J. B. (1995). Mecânica dos solos: ensaios de laboratório. São Carlos: Escola de Engenharia de São Carlos, USP, 248 p.

Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2018). Biostimulants research in some horticultural plant species—A review. Food and Energy Security, 8(2), e00162.

R core team. (2023). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2022.

Rodrigues, M. F., Rodrigues, D., Pellegrini, A., & Pocojeski, E. (2022). Gradual increase in the intensity of machine traffic in timber harvesting: effects on soil composition and functionality. Southern Forests: a Journal of Forest Science, 84(2), 148-163.

Silva, P. C., Ribeiro Junior, W. Q., Ramos, M. L. G., Celestino, S. M. C., Silva, A. D. N., Casari, R. A. D. C. N., Santana, C. C., Lima, C. A., Williams, T. C. R., & Vinson, C. C. (2021). Quinoa for the Brazilian Cerrado: Agronomic characteristics of elite genotypes under different water regimes. Plants, 10(8), 1591.

Streit, N. M., Canterle, L. P., Canto, M. W. D., & Hecktheuer, L. H. H. (2005). The chlorophylls. Ciência Rural, 35, 748-755.

Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. C. (2017). Manual de métodos de análise de solo. 3. ed. Brasília, DF: Embrapa CNPS. 573p.

Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A., & Schipanski, M. E. (2021). Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Applied Soil Ecology, 157, 103735.



How to Cite

OLIVEIRA, M. B. .; MENEZES , J. F. S. .; ROBERTI, G. .; FERREIRA , M. do P. .; POLICARPO, V. H. C. .; OLIVEIRA, A. M. de .; MENEZES, C. C. E. de . Biomass production and chlorophyll contents of cover crops in compacted soils. Research, Society and Development, [S. l.], v. 12, n. 4, p. e22612441171, 2023. DOI: 10.33448/rsd-v12i4.41171. Disponível em: Acesso em: 9 jun. 2023.



Agrarian and Biological Sciences