Assessment of the corrosivity of AISI 1020 steel through microbiological analyzes and the mass loss technique in a clayey soil

Authors

DOI:

https://doi.org/10.33448/rsd-v12i6.41752

Keywords:

Clay soil; Corros will not; AISI 1020 steel; Mass loss rate; Microbiological analysis.

Abstract

This search aims to evaluate the corrosivity of AISI 1020 steel in clayey soil through microbiological analyzes and the mass loss technique. Through the results obtained, according to the identification methodology of the Bergey manual, the presence of two microorganisms was verified, Acidithiobacillus thiooxidans and ferrooxidans , responsible for the biocorrosion process , in addition to filamentous fungi. The presence of these bacteria does not generate a classification for the soil, however, it is known that they can accelerate the corrosion process when in contact with a metallic structure. Regarding the mass loss rate, a criterion used to simulate the assessment of corrosivity in pipes, NACE Standard RP-07-75 was adopted, which defined the intensity of the corrosive process, obtaining as a result for the sterilized sample a value considered low, since it was free of microbial activities and any other contaminating factor, but for the sample without sterilization, the soil was classified as having severe potential. Therefore, this research sought to correlate the characteristics of the soil representative of the Amazon with a process of corrosion of buried pipes due to the presence of microorganisms, which would correspond to a microbiological corrosion. Although, in many cases, there is suspicion of the accuracy of corrosion monitoring techniques, mass loss and microbiological identification techniques were used, which had a positive result in relation to the microbiological one.

Author Biographies

Takeshi Matsuura, Federal University of Amazonas

Possui graduação em Farmácia com habilitação em Análises Clínicas pela Universidade Federal do Amazonas (1992 e 1993), especialização em Biotecnologia pela Universidade Federal do Amazonas (1996), mestrado em Ciências Farmacêuticas pela Universidade Federal de Pernambuco (1998) e doutorado em Ciência de Alimentos pela Universidade Estadual de Campinas (2004). É Professor Associado I da Universidade Federal do Amazonas. Tem experiência na área de Microbiologia, com ênfase em Screening de microrganismos produtores de compostos bioativos, atuando principalmente nos seguintes temas: actinomicetologia, atividade antimicrobiana, biodiversidade e ecologia bacteriana da amazônia. Desenvolve atividades na área de Biossegurança com foco na produtividade das empresas.

Paulo Rogerio da Costa Couceiro, Federal University of Amazonas

Possui graduação em Bacharelado em Química pela Universidade Federal do Amazonas (1992), mestrado em Química de Produtos Naturais pela Universidade Federal do Amazonas (1998) e doutorado em Química pela Universidade Federal de Minas Gerais (2004). Atualmente é professor associado em Físico-Química, do Departamento de Química da Universidade Federal do Amazonas. Tem ampla experiência administrativa e acadêmica, como Chefe de Departamento, Coordenador de Graduação em Química, Coordenador de Pós-Graduação em Química e Coordenador Geral do PARFOR/CAPES. Na pesquisa atua na área de Físico-Química, com ênfase em materiais e espectroscopia, com destaques nos seguintes temas: espectroscopia Mössbauer, difração de raios X e refinamento Rietveld, óxidos de ferro não e magnéticos (naturais e sintéticos) e argilomineral, peneira molecular MCM, zeólitas, carvões e compósitos de Fe/C.

References

ASTM. (2003) - “Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens”.

Bergey, D. H. & Holt, J. G. (1994). Bergey's manual of determinative bacteriology. Bergey's Manual of Determinative Bacteriology, (9th ed.), Ed. Lippincott Williams & Wilkins.

Brewis, T. (1996). Extraction of metals by bacterial oxidation. Mining.

Castro. D. F (2013). Study of the corrosion of 1020 steel in the natural clayey soil of the Amazon Region. Federal University of Amazonas.

Da Silva, S. N. (2007). Study of soil corrosion of steels for cathodically protected pipelines. f 83. Dissertation (Master's Degree in Engineering) – UFRGS School of Engineering.

EMBRAPA. (2018) Manual of soil analysis methods. National Center for Soil Research. EMBRAPA-CNPS. 573 p. (2nd ed.) rev. Current.

Erthal, C., Werner, K. S., Avila, L.B., Casartelli, R. O., Silva, S. N. & Rodrigues, M. R. (2017). Corrosivity of soils in the coal region of Rio Grande do Sul on buried metallic pipes. Blucher chemical Engineering Proceedings, 1(4).

Ferreira, A. M. (2005). Study of soil corrosion – assessment of corrosivity of soil samples from the Antarctic continent and the Southeast Region of Brazil. 2005. 131 f. Dissertation (Master of Science in Metallurgical and Materials Engineering) – Federal University of Rio de Janeiro.

Gentle, V. (2012). Corrosion. (6th ed.), Publisher, LTC - Technical and Scientific Books.

Gentle, V. (2022). Corrosion. (7th ed.), Publisher, LTC - Technical and Scientific Books.

, L. P. (2001). Corrosion Diagnosis and Cathodic Protection in Buried Pipes of Industrial Plants, Technical Bulletin of IEC – Installations and Corrosion Engineering Ltda.

Labegalini P. R, Labegalini, J. A., Fuchs, R.D. & Almeida, M. T. (1992). Mechanical design of overhead transmission lines. (2nd ed.), Edgar Blücher.

MacDonald, D. D. & Sikora, E. (1998). Engelhardt , G. Characterizing electrochemical systems in the frequency domain., v 43, Electrochimica Acta.

NBR 6458/2016. (2016). Soil - Determination of specific mass.

NBR 6459/2016. (2017). Soil - Determination of the liquidity limit. Errata 1: 2017.

NBR 7180/2016. (2016). Soil — Determination of plasticity limit.

NBR 7181/2016. (2016). Soil - Granulometric analysis.

NACE RP-07-75. (1999). Standard recommended practice, preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations.

Oguzie, E. E., Agochukwu, I. B. & Onuchukwu, A. I. (2004). Monitoring corrosion susceptibility of mild steel in varying soil textures by corrosion product counting technique, v. 84. Materials Chemistry and Physics.

Oliveira, S. H. (2010). Study of the use of xanthan and sodium hypochlorite as a strategy to control biocorrosion. 118 f. Thesis (Doctorate in Mechanical Engineering). Federal University of Pernambuco.

Roberge, P. R. (1999). Handbook of Corrosion Engineering. McGraw-Hill.

Rodrigues, L. M. (2006). Study of steel corrosion for API 5L X56 pipelines in RS soils. 97 f. Thesis (Doctorate in Engineering) – School of Engineering of UFRGS, Porto Alegre.

Sharma, S. & Kumar, A. (2021). Recent advances in metallic corrosion inhibition: A review, v. 322, Journal of Molecular Liquids.

Trabanelli, G., Zucchi, F. & Arpaia, M. (1972). Methods for determining soil corrosivity in relation to metallic structures., III(4), Pure and Applicata Chemistry.

Videla, H.A. (2003). Biocorrosion, biofouling and biodeterioration of materials. Edgard Blucher Ltd.

Wang, J., Qi, Y., Zhao, X. & Zhang, Z. (2020). Electrochemical investigation of corrosion behavior of epoxy modified silicate zinc-rich coatings in 3.5% NaCl solution. Coatings, 10, 1-15, 10.3390/coatings10050444.

Downloads

Published

05/06/2023

How to Cite

MACHADO, . A. P. .; MATSUURA, T.; COUCEIRO, P. R. da C. . Assessment of the corrosivity of AISI 1020 steel through microbiological analyzes and the mass loss technique in a clayey soil. Research, Society and Development, [S. l.], v. 12, n. 6, p. e1112641752, 2023. DOI: 10.33448/rsd-v12i6.41752. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41752. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences