The causal relationship between acute kidney disease and Covid-19
DOI:
https://doi.org/10.33448/rsd-v12i5.41770Keywords:
SARS-CoV-2; Covid-19; Acute kidney injury.Abstract
This study aims to conduct a narrative review of the literature to understand the causal relationship between acute kidney disease and Covid-19 and to point out new updates on the subject. The world has been impacted by the coronavirus disease 2019 pandemic, a severe acute respiratory syndrome caused by the SARS-CoV-2 coronavirus, with kidney conditions as one of the most frequent pathological consequences. Acute kidney injury is a condition that the concentrations of urea and creatinine in the blood increase through the retention of nitrogenous wastes, decrease the glomerular filtration rate, as well as the volume of extracellular fluid causing a derangement of body electrolyte homeostasis. Injuries to the renal system related to viral infection can occur due to: direct damage to epithelial cells and the renal vascular endothelium, and the indirect ones due to the disorganization between the balance of the renin-angiotensin system, activation of coagulation pathways, activation of inflammatory pathways and hypoxemia. To date, epidemiological studies indicate that a high condition of association between Covid-19 and kidney diseases. The harmful relationship between SARS-CoV-2 infection and acute kidney diseases is notorious, but new searches are crucial to better understand its etiology.
References
Adamczak, M., Surma, S., & Więcek, A. (2022). Acute kidney injury in patients with COVID-19: Epidemiology, pathogenesis and treatment. Advances in Clinical and Experimental Medicine, 31(3), 317-326. doi.org/10.17219/acem/143542
Augustine, R., S, A., Nayeem, A., Salam, S. A., Augustine, P., Dan, P., & Hasan, A. (2022). Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chemico-Biological Interactions, 351. doi.org/10.1016/j.cbi.2021.109738
Añazco, P., Balta, F., & Cueva, L. (2021). Bilateral renal infarction in a patient with severe COVID-19 infection. J Bras Nefrol, 43(1), 127-131. doi.org/10.1590/2175-8239-JBN-2020-0156
Batlle, D., Soler, M., Sparks, M., Hiremath, S., South, A., Welling, P., & Swaminathan, S. (2020). Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol, 31(07), 1380-1383. doi.org/10.1681/ASN.2020040419
Batista, L. S., & Kumada, K. M. O. (2021). Análise metodológica sobre as diferentes configurações da pesquisa bibliográfica. Revista Brasileira de Iniciação Científica. 8(021029), 1-17.
Chen, Y., Shao, S., Hsu, C., Wu, I., Hung, M., & Chen, Y. (2020). Incidence of acute kidney injury in COVID-19 infection: a systematic review and metaanalysis. Critical Care, 24(346). doi.org/10.1186/s13054-020-03009-y
Darif, D., Hammi, I., Kihel, A., Saik, I. E. I., Guessous, F., & Akarid, K. (2021). The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis, 153. doi.org/10.1016/j.micpath.2021.104799
Ebinger, J. E., Achamallah, N., Ji, H., Claggett, B. L., Sun, N., Botting, P., & Cheng, S. (2020). Pre-existing traits associated with Covid-19 illness severity. PLOS ONE, 15(7). doi.org/ 10.1371/journal.pone.0236240
Fu, E. L., Janse, R., Jong, Y., Endt, V., Milders, J., Willik, E., Rooij, E., Dekkers, O., Rotmans, J., & Diepen, M. (2020). Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis. Clinical Kidney Journal, 13(4), 550-563. doi.org/10.1093/ckj/sfaa160
Geetha, D., Kronbichler, A., Rutter, M., Bajpai, D., Menez, S., Weissenbacher, A., Anand, S., Lin, E., Carlson, N., & Luyckx, V. (2022). Impact of the COVID-19 pandemic on the kidney community: lessons learned and future directions. Nature Reviews Nephrology, 18(11), 724-737. doi.org/10.1038/s41581-022-00618-4
Isnard, P., Vergnaud, P., Garbay, S., Jamme, M., Eloudzeri, M., Karras, A., Anglicheau, D., Galantine, V., Eddine, A. J., Gosset, C., & Rabant, M. (2023). A specific molecular signature in SARS-CoV-2 infected kidney biopsies. JCI Insight, 8(5). doi.org/10.1172/jci.insight.165192
Jewell, P., Bramham, K., Galloway, J., Post, F., Norton, S., Teo, J., Fisher, R., & Lioudaki, E. (2021). COVID-19 related acute kidney injury; incidence, risk factors and outcomes in a large UK cohort. BMC Nephrol, 22(359). doi.org/10.1186/s12882-021-02557-x
Legrand, M., Bell, S., Forni, L., Joannidis, M., Koyner, J., Liu, K., & Cantaluppi, V. (2021). Pathophysiology of COVID-19 associated acute kidney injury. Nature RevIews Nephrology, 17(11), 751-764. doi.org/10.1038/s41581-021-00452-0
Lowe, R., Ferrari, M., Mohi, M., Jackson, A., Beecham, R., Veighey, K., Cusack, R., Richardson, D., Grocott, M., Levett, D., & Dushianthan, A. (2021). Clinical characteristics and outcome of criticallyill COVID-19 patients with acute kidney injury: a single centre cohort study. BMC Nephrology, 22(92). doi.org/10.1186/s12882-021-02296-z
Nadim, M., Forni, L., Mehta, R., Connor, M., Liu, K., Ostermann, M., Rimmelé, T., Zarbock, A., Bell, S., & Kellum, J. (2020). COVID-19 associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nature Reviews Nephrology, 16(12), 747-764. doi.org/10.1038/s41581-020-00356-5
Ruiz, V. J. C., Montes, R. I., Puerta, J. M. P. J. M., Ruiza, C., & Rodrígueza, L. M. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 54, 62-75. doi.org/10.1016/j.cytogfr.2020.06.001
Sabaghian, T., Kharazmi, A., Ansari, A., Omidi, F., Kazemi, S., Hajikhani, B., Harami, R., Tajbakhsh, A., Omidi, S., Haddadi, S., & Mirsaeidi, M. (2022). COVID-19 and Acute Kidney Injury: A Systematic Review. Frontiers inMedicine, 9. doi.org/10.3389/fmed.2022.705908
Shetty, A., Tawhari, I., Boueri, L., Seif, N., Alahmadi, A., Gargiulo, R., Aggarwal, V., Usman, I., Kisselev, S., & Quaggin, S. (2021). COVID-19 – Associated Glomerular Disease. J Am Soc Nephrol, 32(01), 33-40. doi.org/10.1681/ASN.2020060804
Sousa, J. R., & Santos, S. C. M. (2020). Análise do conteúdo em pesquisa qualitativa. Revista Pesquisa e Debate em Educação. 10(2), 1396-1416. doi.org/10.34019/2237-9444.2020.v10.31559.
Tiwari, N. R., Phatak, S., Sharma, V. R., & Agarwal, S. K. (2021). COVID-19 and thrombotic microangiopathies. Thrombosis Research, 202, 191-198. doi.org/10.1016/j.thromres.2021.04.012
Wool, G. D., & Miller, J. L. (2020). The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology, 88(1), 15-27. doi.org/10.1159/000512007
Xu, Z., Tang, Y., Huang, Q., Fu, S., Li, X., Lin, B., Xu, A., & Chen, J. (2021). Systematic review and subgroup analysis of the incidence of acute kidney injury (AKI) in patients with COVID-19. BMC Nephrology, 22(52). doi.org/10.1186/s12882-021-02244-x
Yarijani, Z. M., & Najafi, H. (2021). Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomedicine & Pharmacotherapy, 142. doi.org/10.1016/j.biopha.2021.111966
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Felipe dos Santos Carvalho; Júlia Carolina Oliveira; Danielly Gonçalves Mateus Dias; Dandara Franco Ramos; Larah Ernestina Guimarães Oliveira; Ana Paula Takayama Claudino; Rodrigo Custódio Pinto ; Rodolfo Donizeti Custódio Pinto ; Marcela Mistilides Regatieri; Nicole Cândido Puentes; Gabriel Elyan Keder Moura; João Gabriel Bianchini; Caio Ferreira Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.