Computational intelligence in the financial market: a review of techniques for automating operations

Authors

DOI:

https://doi.org/10.33448/rsd-v12i5.41793

Keywords:

Machine learning; Artificial neural networks; Genetic algorithms; Fuzzy logic.

Abstract

The field of financial applications has become increasingly complex and challenging, with non-linear and uncertain behaviors that change over time. Therefore, computational intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have gained prominence as promising solutions for automating decisions in the financial market. This article aims to explore recent studies that address the use of these techniques and discuss their applications, advantages and limitations. This is a narrative literature review, with an exploratory descriptive character. Literature collection was carried out in the Science Direct and Scopus databases, using keywords related to the theme. It is concluded that computational intelligence techniques have been shown to be capable of solving highly non-linear and time-varying problems, thus becoming an effective approach to automate operations in the financial market.

References

Alardhi, S. M., Al-Jadir, T., Hasan, A. M., Jaber, A. A., & Al Saedi, L. M. (2023). Design of Artificial Neural Network for Prediction of Hydrogen Sulfide and Carbon Dioxide Concentrations in a Natural Gas Sweetening Plant. Ecol. Eng, 2, 55-66, 2023a. DOI: 10.12912/27197050/157092.

Alardhi, S. M., Fiyadh, S. S., Salman, A. D., & Adelikhah, M. (2023). Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon, v.9(1): 1-15, 2023b. DOI: https://doi.org/10.1016/j.heliyon.2023.e12888.

Bahadur, N., Paffenroth, R., & Gajamannage, K. (2019, December). Dimenslon estlmatlon of equlty markets. In 2019 IEEE International Conference on Big Data (Big Data). pp. 5491-5498, 2019. DOI: 10.1109/BigData47090.2019.9006343.

Bumin, M., & Ozcalici, M. (2023). Predicting the direction of financial dollarization movement with genetic algorithm and machine learning algorithms: The case of Turkey. Expert Systems with Applications, 213, 119301. DOI: https://doi.org/10.1016/j.eswa.2022.119301.

Chen, S. & Zhou, C. (2021). "Stock Prediction Based on Genetic Algorithm Feature Selection and Long Short-Term Memory Neural Network," IEEE Access, vol. 9, pp. 9066-9072, 2021, DOI: 10.1109/ACCESS.2020.3047109.

Coêlho, M. V. F. (2019). O uso da inteligência artificial no meio jurídico. 2019. https://www.editorajc.com.br/o-uso-da-inteligencia-artificial-no-meio-juridico.

Dobay, A., Ford, J., Decker, S., Ampanozi, G., Franckenberg, S., Affolter, R., ... & Ebert, L. C. (2020). Potential use of deep learning techniques for postmortem imaging. Forensic Science, Medicine and Pathology, v. 16, 671-679. DOI: 10.1007/s12024-020-00307-3.

Dutta, A. K. (2018). A fuzzy based soft computing technique to predict the movement of the price of a stock. International Journal of Advanced Computer Science and Applications, 9(2). DOI: 10.14569/IJACSA.2018.090245.

Faridi, S., Madanchi Zaj, M., Daneshvar, A., Shahverdiani, S., & Rahnamay Roodposhti, F. (2023). Portfolio rebalancing based on a combined method of ensemble machine learning and genetic algorithm. Journal of Financial Reporting and Accounting, 21(1), 105-125, 2023. DOI 10.1108/JFRA-11-2021-0413.

Fernandes, R. V. C., Carvalho, A. G. P. (2018). Tecnologia jurídica & direito digital: II Congresso Internacional de Direito, Governo e Tecnologia – 2018. Belo Horizonte: Fórum, 2018. 488p. ISBN 978-85- 450-0584-1. http://adpadvogados.com.br/en/wp-content/uploads/2019/11/Revista_Congresso.pdf.

Fiyadha, S. S., Alardhi, S. M., Al Omar, M., Aljumaily, M. M., Al Saadic, M. A., Fayaedd, S. S., ... & El-Shafie, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from water using artificial neural network technique. Heliyon., v.9(4): 1-11, 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e15455.

Fleck, L., Tavares, M. H. F., Eyng, E., Helmann, A. C., Andrade, M. A. M. (2016). Redes neurais artificiais: princípios básicos. Revista Eletrônica Científica Inovação e Tecnologia, v. 1, n. 13, p. 47-57, 2016. DOI: 10.3895/recit.v7i15.4330.

Gajamannage, K., Jayathilake, D. I., Park, Y., & Bollt, E. M. (2023). Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(1), 013109, 2023a. DOI: https://doi.org/10.1063/5.0088748.

Gajamannage, K., Park, Y., & Jayathilake, D. I. (2023). Real-time forecasting of time series in financial markets using sequentially trained dual-LSTMs. Expert Systems with Applications, 223, 119879, 2023b. DOI: https://doi.org/10.1016/j.eswa.2023.119879.

Gerhardt, T. E., Silveira, D. T. (2009). Métodos de Pesquisa. Plageder: UFRGS; 2009;1–31. https://lume.ufrgs.br/handle/10183/52806.

Gujral, H., Kushwaha, A. K., Khurana, S. (2020). Utilização de ferramentas de séries temporais em ciências da vida e neurociência. Neurosci Insights, v. 15, 1-15, 2020. DOI: 10.1177/2633105520963045.

Gupta, S., Modgil, S., Choi, T. M., Kumar, A., & Antony, J. (2023). Influences of artificial intelligence and blockchain technology on financial resilience of supply chains. International Journal of Production Economics, 261, 108868. DOI: https://doi.org/10.1016/j.ijpe.2023.108868.

Hemmat, M., Toghraie, D., Amoozad, F. (2023). Prediction of viscosity of MWCNT-Al2O3 (20:80)/ SAE40 nano-lubricant using multi-layer artificial neural network (MLP-ANN) modeling. Engineering Applications of Artificial Intelligence., v. 121: 1-12, 2023. DOI: https://doi.org/10.1016/j.engappai.2023.105948.

Kamara, A. F., Chen, E., & Pan, Z. (2022). An ensemble of a boosted hybrid of deep learning models and technical analysis for forecasting stock prices. Information Sciences, 594, 1-19. DOI: https://doi.org/10.1016/j.ins.2022.02.015.

Kofi, N. I., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. The Artificial Intelligence Review, 53(4), 3007-3057. DOI:10.1007/s10462-019-09754-z.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and brain sciences, 40: 1-72, 2017. DOI: https://doi.org/10.1017/S0140525X16001837.

Latha, C. M., Bhuvaneswari, S., Soujanya, K. L. S. (2022). "Stock Price Prediction using HFTSF Algorithm," 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Dharan, Nepal, 2022, pp. 1053-1059, doi: 10.1109/I-SMAC55078.2022.9987378.

Liu, S., & Xiao, C. (2021). Application and Comparative Study of Optimization Algorithms in Financial Investment Portfolio Problems. Mobile Information Systems, 2021, 1-10. DOI: https://doi.org/10.1155/2021/3462715.

Ma, Y., & Principe, J. (2018). "Comparison of Static Neural Network with External Memory and RNNs for Deterministic Context Free Language Learning," 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018, pp. 1-7, DOI: 10.1109/IJCNN.2018.8489240.

Martins, T. M., & Neves, R. F. (2020). Applying genetic algorithms with speciation for optimization of grid template pattern detection in financial markets. Expert Systems with Applications, 147, 113191. DOI: https://doi.org/10.1016/j.eswa.2020.113191.

Meymand, A. M., Sulisz, W. (2023). Application of nested artificial neural network for the prediction of significant wave height. Renewable Energy., 209: 157-168, 2023. DOI: https://doi.org/10.1016/j.renene.2023.03.118.

Mirjalili, S. (2019). Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications, 43-55. DOI: 10.1007/978-3-319-93025-1_4.

Mondragon, A. E. C., Mastrocinque, E., Tsai, J. F., & Hogg, P. J. (2019). An AHP and fuzzy AHP multifactor decision making approach for technology and supplier selection in the high-functionality textile industry. IEEE Transactions on Engineering Management, 68(4), 1112-1125, 2021. DOI: 10.1109/TEM.2019.2923286.

Nabipour, M., Nayyeri, P., Jabani, H., Shahab, S., & Mosavi, A. (2020). Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. IEEE Access, v.8, 150199-150212, 2020. DOI: 10.1109/ACCESS.2020.3015966.

Naranjo, R., & Santos, M. (2019). A fuzzy decision system for money investment in stock markets based on fuzzy candlesticks pattern recognition. Expert Systems with Applications, 133, 34-48. DOI: https://doi.org/10.1016/j.eswa.2019.05.012.

Olatunji, K. O., Ahmed, N.A., Madyira, D.M., Adebayo, A.O., Ogunkunle, O., Adeleke, O. (2022). Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction Renew. Energy, 189 (2022), pp. 288-303. DOI: DOI: 10.1016/j.renene.2022.02.088.

Pereira, A. S., Shitsuka D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia

da pesquisa científica [recurso eletrônico]. – 1. ed. – Santa Maria, RS: UFSM, NTE, 2018. 1 e-book. https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Cientifica_final.pdf.

Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PloS one, 15(1), e0227222. DOI: https://doi.org/10.1371/journal.pone.0227222.

Ribeiro, V.S. (2022). Method for the estimation of institutional quality indexes using fuzzy logic. MethodsX. 2022 Mar 25;9:101676. DOI: 10.1016/j.mex.2022.101676. PMID: 35402169; PMCID: PMC8983336.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181. DOI: https://doi.org/10.1016/j.asoc.2020.106181.

Silva, J. A. S., Mairink, C. H. P. (2019). Inteligência artificial: aliada ou inimiga.LIBERTAS: Rev. Ciênci. Soc. Apl., Belo Horizonte, v. 9, n. 2, p. 64-85, 2019. http://famigvirtual.com.br/famig-libertas/index.php/libertas/article/view/247/230.

Silver, M., Svoray, T., Karnieli, A., Fredjc, E. (2020). Improving weather radar precipitation maps: a fuzzy logic approach. Atmos. Res. 2020;234 doi: 10.1016/j.atmosres.2019.104710.

Tealab, A., Hefny, H., & Badr, A. (2018). Short-term stock market fuzzy trading system with fuzzy capital management. International Journal of Intelligent Engineering and Systems, 11(3). DOI: 10.22266/ijies2018.0630.06.

Thakkar, A., & Chaudhari, K. (2022). Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction. Applied Soft Computing, 128, 109428. DOI: https://doi.org/10.1016/j.asoc.2022.109428.

Vogl, M., Rötzel, P. G., & Homes, S. (2022). Forecasting performance of wavelet neural networks and other neural network topologies: A comparative study based on financial market data sets. Machine Learning with Applications, 8, 100302, 2022. DOI: https://doi.org/10.1016/j.mlwa.2022.100302.

Zhang, C., Zhang, F., Chen, N. et al. (2022). Application of artificial intelligence technology in financial data inspection and manufacturing bond default prediction in small and medium-sized enterprises (SMEs). Oper Manag Res, v. 15, 941–952 (2022). DOI: https://doi.org/10.1007/s12063-022-00314-3.

Zhang, Y., Chu, G., & Shen, D. (2021). The role of investor attention in predicting stock prices: The long short-term memory networks perspective. Finance Research Letters, v. 38:1-12, 2021. DOI: https://doi.org/10.1016/j.frl.2020.101484.

Published

21/05/2023

How to Cite

SOBRINHO, G. F. L. .; CAVALCANTE, R. C. . Computational intelligence in the financial market: a review of techniques for automating operations. Research, Society and Development, [S. l.], v. 12, n. 5, p. e22212541793, 2023. DOI: 10.33448/rsd-v12i5.41793. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/41793. Acesso em: 22 dec. 2024.

Issue

Section

Exact and Earth Sciences