Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4216

Keywords:

Financial markets; Computational Simulation; Optimization; PSO

Abstract

Financial markets are complex systems in which traders interact using the most varied strategies. Computational techniques that use intelligent agents can assist in decision making in order to maximize gains. In this sense, the objective of this article is to observe the behavior of financial agents participating in simulated markets and infer about the gains of these agents. Through the Particle Swarm Optimization algorithm, we used two distinct groups of intelligent agents: one group uses a degree of belief in the prediction of assets for the next day and the other group does not use, in which both interact with each other seeking to maximize their gains. An exploratory research was carried out, with quantitative analysis on the data. The results showed that the group that uses the forecast is more homogeneous, showing higher average wealth gains, with capital and acquired stock concentrations varying according to the historical price series used (Bitcoin, Ethereum, Litcoin, or Ripple). Therefore, the implemented procedure can be improved and used for the development of environments aimed at a better understanding of financial markets and assisting market participants in the definition of trading strategies that enable the minimization of financial losses.

References

Ahmed, M. K., Wajiga, G. M., Blamah, N. V., & Modi, B. (2019). Stock Market Forecasting Using ant Colony Optimization Based Algorithm. American Journal of Mathematical and Computer Modelling, 4(3), 52-57. https://doi.org/10.11648/j.ajmcm.20190403.11.

Hitam, N. A., Ismail, A. R., & Saeed, F. (2019). An Optimized Support Vector Machine (SVM) based on Particle Swarm Optimization (PSO) for Cryptocurrency Forecasting. Procedia Computer Science, 163, 427-433. https://doi.org/10.1016/j.procs.2019.12.125.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE. http://doi.org/10.1109/ICNN.1995.488968.

Lajevardy, P., Parand, F. A., Rashidi, H., & Rahimi, H. (2017). A hybrid method for load forecasting in smart grid based on neural networks and cuckoo search optimization approach. International Journal of Renewable Energy Resources, 5(1), 13-20.

Mandes, A., & Winker, P. (2017). Complexity and model comparison in agent based modeling of financial markets. Journal of Economic Interaction and Coordination, 12(3), 469-506.

https://doi.org/10.1007/s11403-016-0173-0.

Pessin, G., & Osório, F. (2009). Otimização por Enxame de Partículas aplicado à formação e atuação de grupos robóticos. Scientia, 20(2), 94-106. http://doi.org/10.4013/sct.2009.20.2.03.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 5 maio 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Ramos, W. V., & Neto, C. R. (2015). A Utilização da Modelagem de Sistemas Complexos na Construção de um Mercado de Ações Artificial. Revista Eletrônica do Departamento de Ciências Contábeis & Departamento de Atuária e Métodos Quantitativos (REDECA), 2(1), 101-115.

Serapião, A. B. D. S. (2009). Fundamentos de otimização por inteligência de enxames: uma visão geral. Sba: Controle & Automação Sociedade Brasileira de Automatica, 20(3), 271-304.

https://doi.org/10.1590/S0103-17592009000300002.

Tang, L., Wang, A., Xu, Z., & Li, J. (2017). Online-purchasing behavior forecasting with a firefly algorithm-based SVM model considering shopping cart use. Eurasia Journal of Mathematics, Science and Technology Education, 13(12), 7967-7983.

Published

12/05/2020

How to Cite

NASCIMENTO, K. K. F. do; SANTOS, F. S. dos; JALE, J. da S.; FERREIRA, T. A. E. Behavior of financial agents in an artificial market developed with the Particle Swarm Optimization algorithm. Research, Society and Development, [S. l.], v. 9, n. 7, p. e285974216, 2020. DOI: 10.33448/rsd-v9i7.4216. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4216. Acesso em: 19 nov. 2024.

Issue

Section

Exact and Earth Sciences