Comparison of methods and distribution models for the modeling of wind speed data in the municipality of Petrolina, Northeast Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4221

Keywords:

Weibull; Lognormal; MM; EMV; PSO; Adjustment

Abstract

The identification of the probability distribution model that provides the best fit to the wind speed databases is necessary for defining investment and developing projects about the wind potential of different locations. For this, the estimation of the parameters of the models is essential in this process. The aim of this study is to investigate among the distribution models and methods for estimating their respective parameters with better modeling in the literature which of them provides better fit to the wind speed data of Petrolina-PE. Through the case study, of quali-quanti nature, the adjustment of the Moment Method, the Estimation of Maximum Likelihood and the Particle Swarm Optimization (PSO) algorithm with Weibull were evaluated in this work, as well as the PSO with the Lognormal-Weibull and Weibull-Weibull distributions to the historical series of information. The results, investigated with the RMSE, R^2 and X^2 error measures and by verifying the percentage of correctness between the theoretical and sample quantiles, demonstrated a better modeling of the Lognormal-Weibull distribution model with the PSO algorithm to the historical speed series of the wind. Thus, from the determination of the best distribution model that fits the data in the region, it may be possible to generate estimated wind speed series for areas where these historical series do not exist.

Author Biography

Kerolly Kedma Felix do Nascimento, Universidade Federal Rural de Pernambuco

Departamento de Biometria e Estatística Aplicada

References

ABEEolica. (2019). Eólica já é a segunda fonte da matriz elétrica brasileira com 15 gw de capacidade instalada. Acesso em 06 maio 2020. Em: http://abeeolica.org.br/noticias/eolica-ja-e-a-segunda-fonte-da-matriz-eletrica-brasileira-com-15-gw-de-capacidade-instalada/.

Da Silva, K. A., Rodrigues, M. S., Cunha, J. C., Alves, D. C., Freitas, H. R., & Lima, A. M. N. (2017). Levantamento de solos utilizando geoestatística em uma área de experimentação agrícola em Petrolina-PE. Comunicata Scientiae, 8(1): 175-180. https://doi.org/10.14295/cs.v8i1.2646.

De Souza, A., De Oliveira, S. S. & Ozonur, D. (2019). Análise estatística de parâmetros de Weibull para avaliação de potencial de energia eólica em Campo Grande. Journal of Environmental Analysis and Progress, 4.3: 168-179. https://doi.org/ 10.24221/JEAP.4.3.2019.2468.168-179.

Dos Santos, F. S., Nascimento, K. K. F., Jesus, E. S., Jale, J. S., Stosic, T. & Ferreira, T. A. E. (2019). Análise estatística da velocidade do vento em Petrolina-PE utilizando as distribuições Weibull e a Burr. Journal of Environmental Analysis and Progress, 4(1): 057-064. https://doi.org/10.24221/JEAP.4.1.2019.2057.057-064.

IBGE. (2019). Instituto Brasileiro de Geografia e Estatística. Acesso em 06 maio 2020 Em: https://cidades.ibge.gov.br/brasil/pe/petrolina/panorama.

Jatobá, L., Silva, A. F. & Galvíncio, J. D. (2017). A dinâmica climática do Semiárido em Petrolina-PE. Embrapa Semiárido-Artigo em periódico indexado (ALICE).

Kumar, M. B. H., Balasubramaniyan, S., Padmanaban, S., & Holm-Nielsen, J. B. (2019). Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India. Energies, 12(11), 2158. https://doi.org/10.3390/en12112158.

Melo, E. C. D. S., Aragão, M. R. D. S., & Correia, M. D. F. (2014). Regimes do vento à superfície na área de Petrolina, Submédio São Francisco. Revista Brasileira de Meteorologia, 29(2): 229-241. https://doi.org/10.1590/S0102-77862014000200007.

Ouarda, T. B., Charron, C. & Chebana, F. (2016). Review of criteria for the selection of probability distributions for wind speed data and introduction of the moment and L-moment ratio diagram methods, with a case study. Energy Conversion and Management, 124: 247-265. http://dx.doi.org/10.1016/j.enconman.2016.07.012 0196-8904/.

Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 5 maio 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Pishgar-Komleh, S. H., Keyhani, A., & Sefeedpari, P. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable and Sustainable Energy Reviews, 42, 313-322. http://dx.doi.org/10.1016/j.rser.2014.10.028.

Qin, X., Zhang, J. & Yan, X. (2012). Two improved mixture Weibull models for the analysis of wind speed data. Journal of applied meteorology and climatology, 51.7: 1321-1332. https://doi.org/10.1175/JAMC-D-11-0231.1.

Rajapaksha, K. W. G. D. H., & Perera, K. (2016). Wind speed analysis and energy calculation based on mixture distributions in Narakkalliya, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 44(4). http://dx.doi.org/10.4038/jnsfsr.v44i4.8023.

Rocha, L. C. S., Aquila, G., Junior, P. R., de Paiva, A. P., de Oliveira Pamplona, E., & Balestrassi, P. P. (2018). A stochastic economic viability analysis of residential wind power generation in Brazil. Renewable and Sustainable Energy Reviews, 90(1): 412-419. https://doi.org/10.1016/j.rser.2018.03.078.

Seckin, N., Yurtal, R., Haktanir, T., & Dogan, A. (2010). Comparison of probability weighted moments and maximum likelihood methods used in flood frequency analysis for Ceyhan River Basin. Arabian Journal for Science and Engineering, 35(1), 49.

Zhou, J., Yang, J., Lin, L., Zhu, Z., & Ji, Z. (2018). Local best particle swarm optimization using crown jewel defense strategy. In Critical developments and applications of swarm intelligence (pp. 27-52). IGI Global. https://doi.org/10.4018/978-1-5225-5134-8.ch002.

Published

12/05/2020

How to Cite

NASCIMENTO, K. K. F. do; SANTOS, F. S. dos; JALE, J. da S.; FERREIRA, T. A. E. Comparison of methods and distribution models for the modeling of wind speed data in the municipality of Petrolina, Northeast Brazil. Research, Society and Development, [S. l.], v. 9, n. 7, p. e308974221, 2020. DOI: 10.33448/rsd-v9i7.4221. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4221. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences