Biochar as substrate conditioner for the production of seedling of native forest species
DOI:
https://doi.org/10.33448/rsd-v12i9.43156Keywords:
Forestry; Forest nursery; Composition of substrates; Woody species; Quality seedlings.Abstract
The practice of mixing or combining substrates of different origins is common in nurseries, and the use of biochars is a way to improve the composition of the substrate, meet the particularities of the plant, reduce production costs, and re-signify materials that would be discarded in the environment. This work had the objective of verifying the influence of the use of biochar in the production of seedlings of woody species, indicating the doses and composition of substrates that best adjust to the production of quality seedlings. In a literature review of the last ten years, we sought to verify the recommended doses and the effects of biochar on substrate composition. In the literature, the potential use of biochar as a substrate component was verified, mainly because it has a porous and reactive structure, capable of increasing the availability of water and other nutrients for the plant and being a shelter for several beneficial microorganisms. The appropriate dose of biochar in the substrate composition may vary according to the species of interest, management system, source and proportions of inputs. Thus, it is concluded that different sources of inputs, combinations and proportions between them, affect the production of seedlings in different ways, with the best dose of biochar being a complex matter and of notable importance when the objective is to produce seedlings with quality.
References
Araújo, E. F., Aguiar, A. S., Arauco, A. M. S., Gonçalves, E. O., & Almeida, K. N. S. (2017). Crescimento e qualidade de mudas de paricá produzidas em substratos à base de resíduos orgânicos. Nativa, 5(1), 16-23.
Atkinson, C. J., Fitzgerald, J., D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337, 1-18. https://doi.org/10.1007/s11104-010-0464-5
Barros, D. L., Rezende, F. A., & Campos, A. T. (2019). Production of Eucalyptus urograndis plants cultivated with activated biochar. Rev. Bras. Cienc. Agrar., 14(2), 1-6. https://doi.org/10.5039/agraria.v14i2a5649
Basílio, L. J. N., Rodrigues, L. A., Silva, M. S. A., Colen, F., & Oliveira, L. S. (2020). Biochar de casca de pequi como componente de substrato para produção de mudas de Eucalyptus urophylla S. T. Cad. Ciênc. Agrá., 12, 01-10. https://doi.org/10.35699/2447-6218.2020.24836
Batista, E. M. C. C. (2018). Biochar como ligante macromolecular no solo visando aumentar a capacidade de retenção de água nos solos do nordeste do Brasil (Tese de doutorado). Universidade Federal do Paraná, Curitiba, Paraná, Brasil. https://hdl.handle.net/1884/59431
Bonassa, G., Schneider, L. T.; Canever, V. B., Cremonez, P. A., Frigo, E. P., Dieter, J., & Teleken, J. G. (2018). Scenarios and prospects of solid biofuel use in Brazil. Renewable and Sustainable Energy Reviews, 82(3), 2365-2378. https://doi.org/10.1016/j.rser.2017.08.075
Cardoso Jr., C. D., Pimenta, A. S., Souza, E. C., Pereira, A. K. S., & Dias Jr., A. F (2022). Uso agrícola e florestal do biochar: estado da arte e futuras pesquisas. Research, Society and Development, 11(2). http://dx.doi.org/10.33448/rsd-v11i2.25999
Caron, V. C., Graças, J. P., & Castro, P. R. C. (2015). Condicionadores do solo: ácidos húmicos e fúlvicos. ESALQ/USP.
Cavalcante, L., Herbert, L. C., Petter, F. A., Albano, F. G., Silva, R. R. S., & Silva Jr., G. B. (2012). Biochar no substrato para produção de mudas de maracujazeiro amarelo. Revista de la Facultad de Agronomía, 111(1), 41-47.
Drake, J. A., Carrucan, A., Jackson, W. R., Cavagnaro, T. R., & Patti, A. F. (2015). Biochar application during reforestation alters species present and soil chemistry. Science of The Total Environment, 514(1), 359-365. https://doi.org/10.1016/j.scitotenv.2015.02.012
Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana - A review. Renewable and Sustainable Energy Reviews, 15(8), 3539-3551. https://doi.org/10.1016/j.rser.2011.05.010
Fernández-Ugalde, O., Gartzia-Bengoetxea, N., Arostegi, J., Moragues, L., & Arias-González, A. (2017). Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area. Science of The Total Environment, 587, 204-213. https://doi.org/10.1016/j.scitotenv.2017.02.121
Flores, J. A., Konrad, O., Flores, C. R., & Schroder, N. T. (2018). Inventory data on Brazilian Amazon׳s non-wood native biomass sources for bioenergy production. Data in Brief, 20, 1935-1941. https://doi.org/10.1016/j.dib.2018.09.050
Gao, X., Driver, L. E., Kasin, I., Masiello, C. A., Pyle, L. A., Dugan, B., & Ohlson, M. (2017). Effect of environmental exposure on charcoal density and porosity in a boreal forest. Science of The Total Environment, 592, 316-325. https://doi.org/10.1016/j.scitotenv.2017.03.073
Gómez-Luna, B. E., Ruiz-Aguilar, G. M. L., Vázquez-Marrufo, G., Dendooven, L., & Olalde-Portugal, V. (2012). Enzyme activities and metabolic profiles of soil microorganisms at KILN sites in Quercus spp. temperate forests of central Mexico. Applied Soil Ecology, 52, 48-55. https://doi.org/10.1016/j.apsoil.2011.10.010
Han, L., Sun, K., Yang, Y., Xia, X., Li, F., Yang, Z., & Xing, B. (2020). Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364. https://doi.org/10.1016/j.geoderma.2020.114184
Haykiri-Acma, H., Yaman S., & Kucukbayrak, S. (2010). Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology, 91(7), 759-764. https://doi.org/10.1016/j.fuproc.2010.02.009
He, L. L., Zhong, Z. K, & Yang, H. M. (2017). Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of Integrative Agriculture, 16(3), 704-712. https://doi.org/10.1016/S2095-3119(16)61420-X
Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management: Science and Technology. Londres, Inglaterra: London & Sterling.
Lima, S. L., Marimon Jr., B. G., Petter, F. A., Tamiozzo, S., Buck, G. B., & Marimon, B. S. (2013a). Biochar as substitute for organic matter in the composition of substrates for seedlings. Acta Scientiarum. Agronomy, 35(3), 333-341. https://doi.org/10.4025/actasciagron.v35i3.17542
Lima, S. L., Tamiozzo, S., Palomino, E. C., Petter, F. A., & Marimon Jr., B. H. (2015). Interactions of biochar and organic compound for seedlings production of Magonia pubescens A. St.-Hil. Revista Árvore, 39(4), 655-661. https://doi.org/10.1590/0100-67622015000400007
Lima, S. L., Tamiossi, S., Petter, F. A., Marimon, B. S., & Marimon Jr., B. H. (2013b). Desenvolvimento de mudas de beterraba em substratos comerciais tratados com biochar. Agrotrópica, 25(3), 181-186.
Lin, Z., Liu, Q., Liu, G., Cowie, A. L., Bei, Q., Liu, B., Wang, X., Ma, J., Zhu, J., & Xie, Z. (2017). Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere, 27(2), 248-261. https://doi.org/10.1016/S1002-0160(17)60314-X
Lustosa Filho, J. F., Nobrega, J. C. A., Nobrega, R. S. A., Dias, B. O., Amaral, F. H. C., & Amorim, S. P. do N. (2015). Influence of organic substrates on growth and nutrient contents of jatob (Hymenaea stigonocarpa). African Journal of Agricultural Research, 10(26), 2544-2552. https://doi.org/10.5897/ajar2015.9781
Madari, B. E., Cunha, T. J. F., Novotny, E. H., Milori, D. M. B. P., Martin, L., Benites, V. M., Coelho, M. R., & Santos, G. A. (2009). Matéria orgânica dos solos antrópicos da Amazônia (Terra Preta de Índio): suas características e papel na sustentabilidade da fertilidade do solo. In: Teixeira, W. G., Kern, D. C., Madari, B. E., Lima, H. N., Woods, W. I. (Org.), As Terras Pretas de ĺndio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas. Manaus, AM: Embrapa Amazônia Ocidental.
Maia, C. M. B. F., Guiotoku, M., Peixoto, R. T. G., & Vargas, L. M. P. (2021). Biochar e o eucalipto. In: Oliveira, E. B., Pinto Jr., J. E. (Ed.), O eucalipto e a Embrapa: quatro décadas de pesquisa e desenvolvimento. Brasília, DF: Embrapa.
Marcelino, I. P., Loss, A. L., & Andrade, M. A. N. (2020). Aspectos gerais do uso do biochar para sustentabilidade com ênfase aos atributos edáficos: a revisão. R. gest. sust. ambient., Florianópolis, 9, 301-319. https://doi.org/10.19177/rgsa.v9e02020301-319
Marimon Jr., B. H., Petter, F. A., Andrade, F. R., Madari, B. E., Marimon, B. S., Schossler, T. R., Gonçalves, L. G., & Belém, R. (2012). Produção de mudas de jiló em substrato condicionado com Biochar. Comunicata Scientiae, 3(2), 108-114.
Monteiro, A. B., Bamberg, A. L., Pereira, I. dos S., Stöcker, C. M., & Timm, L. C. (2021). Agronomic performance and optimal ranges of atributes of substrates with biochar from anaerobic sewage sludge for black wattle (Acacia mearnsii) seedlings. International Journal of Recycling of Organic Wast in Agriculture, 10(3), 297-308.
Novak, J. M., Cantrell, K. B., Watts, D. W., Busscher, W. J., & Johnson, M. G. (2014). Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments, 14, 330-343. https://doi.org/10.1007/s11368-013-0680-8
Petter, F. A., Andrade, F. R., Marimon Jr., B. H., Gonçalves, L. G., & Schossler, T. R. (2012a). Biochar como condicionador de substrato para a produção de mudas de eucalipto. Revista Caatinga, 25(4), 44-51.
Petter, F. A., Marimon Jr., B. H., Andrade, F. R., Schossler, T. R., Gonçalves, L. G., & Mariomon, B. S. (2012b). Biochar como condicionador de substrato para a produção de mudas de alface. Agrarian, 5(17), 243-250.
Pimenta, A. S., Oliveira M. N., Carvalho, M. A. B., Silva, G. G. C., & Oliveira, E. M. M. (2019). Effects of biochar addition on chemical properties of a sandy soil from northeast Brazil. Arabian Journal of Geosciences, 12(70). https://doi.org/10.1007/s12517-018-4194-y
Ramlow, M., Rhoades, C. C., & Cotrufo, M. F. (2018). Promoting revegetation and soil carbon sequestration on decommissioned forest roads in Colorado, USA: a comparative assessment of organicsoil amendments. Forest Ecology and Management, 427, 230-241. https://doi.org/10.1016/j.foreco.2018.05.059.
Reis, A. M. F., Cordovil, C. M. S., Matos, E. J. S., Gouvea, C. F., Barreiros, R. M., Vanconcelos, M. C., & Silva, G. C. (2022). Efeito do uso do biocarvão de casca de coco e bagaço de laranja no desenvolvimento de mudas de Corymbia citriodora Hill & Johnson. In: Pacheco, C. S. G. R., Ribeiro, G. F., Caldeira, M. V. W., Martins, W. F. (Org), Biomassa: recursos, aplicações e tecnologias em pesquisa. Guaruja, SP: Editora Científica Digital Ltd. https://doi.org/10.37885/220809800
Rezende, E. I. P., Ângelo, L. C., Santos, S. S., & Mangrich, A. S. (2011). Biocarvão (Biochar) e sequestro de carbono. Rev. Virtual Quím., 3(5), 426-433. https://doi.org/10.5935/1984-6835.20110046
Rezende, F. A., Santos, V. A. H. F., Maia, C. M. B. F., & Morales, M. M. (2016). Biochar in substrate composition for production of teak seedlings. Pesq. agropec. bras., 51(9), 1449-1456. https://doi.org/10.1590/S0100-204X2016000900043
Rother, E. T. (2007). Revisão Sistemática X Revisão Narrativa. Acta paul. Enferm., 20(2). https://doi.org/10.1590/S0103-21002007000200001
Sánchez-Reinoso, A. D., Ávila-Pedraza, E. A., & Restrepo-Díaz, H. (2020). Use of Biochar in Agriculture. Acta biol. Colomb., 25(2), 327-338. https://doi.org/10.15446/abc.v25n2.79466
Santos, F. P., Lima, A. P. L., Lima, S. F., Silva, A. A. P., Contarde, L. M., & Vendruscolo, E. P. (2022). Biochar and biostimulant in forming Schinus terebinthifolius seedlings. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(7), 520-526. https://doi.org/10.1590/1807-1929/agriambi.v26n7p520-526
Silva, C. M. S., Carneiro, A. C. O., Vital, B. R., Figueiró, C. G., Fialho, L. F., Magalhães, M. A., Carvalho, A. G., & Cândido, W. L. (2018). Biomass torrefaction for energy purposes – Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews, 82(3), 2426-2432. https://doi.org/10.1016/j.rser.2017.08.095
Soares, D. C., Lima, S. F., Lima, A. P. L., & Paula, J. A. F. (2021). Uso do biochar e de bioestimulante na produção e qualidade de mudas de Sapindus saponaria L. Ciência Florestal, 31(1), 106-122. https://doi.org/10.5902/1980509828677
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82. https://doi.org/10.1016/S0065-2113(10)05002-9
Song, X. D., Xue, X. Y., Chen, D. Z., He, P. J., & Dai, X. H. (2014). Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere, 109, 213-220. https://doi.org/10.1016/j.chemosphere.2014.01.070
Souchie, F. F., Madari, B. E., Marimon Jr., B. H., Petter, F. A., Marimon, B. S., Lenza, E., Silva, T. L. G., & Lima, H. C. (2011). Carvão pirogênico como condicionante para substrato de mudas de Tachigali vulgaris L.G. Silva & H.C. Lima. Ciência Florestal, 21, 811-821.
Toledo, F. H.; Venturin, N., Carlos, L., Dias, B. A., Venturin, R. P., & Macedo, R. L. (2015). Composto de resíduos da fabricação de papel e celulose na produção de mudas de eucalipto. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(7), 711-716. https://doi.org/10.1590/1807-1929/agriambi.v19n7p711-716
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol, 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3
Trautenmüller, J. W., Borella, J., Lambrecht, F. R., Valerius, J., Costa Jr., S., & Leschewitz, R. (2016). Influência de composto orgânico no desenvolvimento de Ilex paraguariensis St. Hilaire. Adv. For. Sci., 3(4), 55-58.
Trazzi, P. A., Caldeira, M. V. W., Passos, R. R., & Gonçalves, E. O. (2013). Substratos de origem orgânica para produção de mudas de teca (Tectona grandis Linn. F.). Ciência Florestal, 23(3), 401-409. https://doi.org/10.5902/1980509810551
Trazzi, P. A.; Higa, A. R., Dieckow, J., Mangrich, A. S., & Higa, R. C. V. (2018). Biocarvão: Realidade e potencial de uso no meio florestal. Ciência Florestal, 28(2), 875-887. https://doi.org/10.5902/1980509832128
Tripathi, M., Sahu J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481. https://doi.org/10.1016/j.rser.2015.10.122
Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2018). From Lignin to Valuable Products–Strategies, Challenges, and Prospects. Bioresource Technology, 271, 449-461. https://doi.org/10.1016/j.biortech.2018.09.072
Yuan, J., Xu, R., Qian, W., & Wang, R. (2011). Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Sediments, 11, 741-750. https://doi.org/10.1007/s11368-011-0365-0
Zhang, L., Xu, C., & Champagne, P. (2010). Overview of recent advances in termo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969-982. https://doi.org/10.1016/j.enconman.2009.11.038
Zhang, R., Zhao, Y., Lin, J., Hu, Y., Hänninen, H., & Wu, J. (2019). Biochar application alleviates unbalanced nutrient uptake caused by N deposition in Torreya grandis trees and seedlings. Forest Ecology and Management, 432, 319-326. https://doi.org/10.1016/j.foreco.2018.09.040
Zhang, R., Zhang, Y., Song, L., Song, X., Hänninen, H., & Wu, J. (2017). Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. Forest Ecology and Management, 391, 321-329. https://doi.org/10.1016/j.foreco.2017.02.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Camilla de Oliveira Souza; Renato Ribeiro Passos; Elzimar de Oliveira Gonçalves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.