Viability of the use of bacterial nanoscellulose in the treatment of wounds induced in wistar rats

Authors

DOI:

https://doi.org/10.33448/rsd-v12i9.43175

Keywords:

Regeneration; Wounds and injuries; Wound healing; Biomaterial.

Abstract

Introduction: Since antiquity, several treatments have been used to manage wounds. Currently, wound dressings with bacterial nanocellulose (BNC) have been used as treatment for tissue injuries, due to its biocompatibility, ability to maintain wound moisture, greater stimulation of keratinocytes, fibroblastos and lower infection rates. Objective: To analyze macroscopically and microscopically the healing process of wound induced in Wistar rats using a dressing composed of BNC membrane. Methods: Twenty Wistar rats were submitted to two incisions on the back, corresponding to Test Wounds (TW), treated with a dressing composed of BNC membrane, and Control Wounds (CW), treated with gauze and saline solution. The rats were randomly and equally divided into four groups of five rats, so that G1 corresponded to the group biopsied at 3 days postoperatively, G2 at 7 days, G3 at 14 days, G4 at 21 days. The material collected was used to make histological slides stained with Hematoxylin/Eosin and Masson's Trichrome. Results: There was no purulent exudate, hemorrhage or abscess formation in either group. The contraction of the TW borders was statistically significant (p<0,05) compared to the CW. The TW showed a lower inflammatory response and an earlier rate of reepithelialization than CW, and exhibited an earlier reduction in theamount of fibroblastos, as well as an earlier formation and organization of collagen fibers. Conclusion: The use of BNC dressing promoted early contraction of the wound edge, lower inflammatory response, greater attraction of fibroblastos, collagen formation, and organization of collagen fibers, resulting in faster healing.

References

Asai, E., Yamamoto, M., Ueda, K., & Waguri, S. (2018). Spatiotemporal alterations of autophagy marker LC3 in rat skin fibroblasts during wound healing process. Fukushima Journal of Medical Science, 64(1), 15-22. https://doi.org/10.5387/fms.2016-13

Aumeeruddy-Elalfi, Z., Gurib-Fakim, A., & Mahomoodally, M. F. (2016). Chemical composition, antimicrobial and antibiotic potentiating activity of essential oils from 10 tropical medicinal plants from Mauritius. Journal of Herbal Medicine, 6(2), 88-95. https://doi.org/10.1016/j.hermed.2016.02.002

Bayazidi, P., Almasi, H., & Khosrowshahi Asl, A. (2018). Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. International Journal of Biological Macromolecules, 107(Part B), 2544-2551. https://doi.org/10.1016/j.ijbiomac.2017.10.137

Coelho, G. A., Magalhães, M. A. B., Matioski, A., Ribas-Filho, J. M., Magalhães, W., Ceccon Claro, F., Ramos, R. K., de Camargo, T., & Malafaia, O. (2020). Pine nanocellulose and bacterial nanocellulose dressings are similar in the treatment of second-degree burn? Experimental study in rats. ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 33(2), e1533. https://doi.org/10.1590/0102-672020200002e1533

Coelho, M. S., et al. (2020). Avaliação do estresse oxidativo em pacientes com diabetes tipo 2. Arquivos Brasileiros de Cirurgia Digestiva, 33(3), e1517. https://doi.org/10.1590/0102-672020190001e1517

Colli, T. C., Rodrigues, A. E., Xavier Junior, G. F., Pittella, C. Q. P., & Nascimento, T. C. (2023). Modificações na nanocelulose bacteriana para aplicação no tratamento de feridas: uma revisão integrativa. Revista Enfermagem Atual In Derme, 97(2), e023111. https://doi.org/10.31011/reaid-2023-v.97-n.2-art.1537

Czaja, W., Krystynowicz, A., Bielecki, S., & Brown Jr., R. M. (2006). Microbial cellulose - the natural power to heal wounds. Biomaterials, 27(2), 145-151. https://doi.org/10.1016/j.biomaterials.2005.07.035

de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira, O. B. Jr., & Ribeiro, S. J. L. (2016). A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 153, 406-420. https://doi.org/10.1016/j.carbpol.2016.07.059

El-Saied, H., Basta, A. H., & Gobran, R. H. (2004). Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 43(3), 797-820. https://doi.org/10.1081/PPT-120038065

Fu, X., Zhang, H., & Yang, G. (2012). Research on the relationship between cross-border M&A performance and corporate culture integration: An empirical analysis of Chinese cross-border M&As. International Business Review, 21(2), 245-259. https://doi.org/10.1016/j.ibusrev.2011.03.003

Garraud, O., Hozzein, W. N., & Badr, G. (2017). Wound healing: time to look for intelligent, 'natural' immunological approaches? BMC Immunology, 18(Suppl 1), 23. https://doi.org/10.1186/s12865-017-0207-y

Gonzalez, A. C., Costa, T. F., Andrade, Z. A., & Medrado, A. R. (2016). Wound healing - A literature review. Anais Brasileiros de Dermatologia, 91(5), 614-620. https://doi.org/10.1590/abd1806-4841.20164741

Goodarzi, P., Falahzadeh, K., Nematizadeh, M., Farazandeh, P., Payab, M., Larijani, B., Tayanloo Beik, A., & Arjmand, B. (2018). Tissue Engineered Skin Substitutes. Advances in Experimental Medicine and Biology, 1107, 143-188. https://doi.org/10.1007/5584_2018_226

Han, G., & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Advances in Therapy, 34(3), 599-610. https://doi.org/10.1007/s12325-017-0478-y

Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Mäkitie, A., Luukko, K., Yliperttula, M., & Kavola, H. (2016). Nanofibrillar cellulose wound dressing in skin graft donor site treatment. Journal of Controlled Release, 244(Pt B), 292-301. https://doi.org/10.1016/j.jconrel.2016.07.053

Khalid, A., Khan, R., Ul-Islam, M., Khan, T., & Wahid, F. (2017). Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydrate Polymers, 164, 214-221. https://doi.org/10.1016/j.carbpol.2017.01.061

Koike, Y., Yozaki, M., Utani, A., & Murota, H. (2020). Fibroblast growth factor 2 accelerates the epithelial–mesenchymal transition in keratinocytes during the wound healing process. Scientific Reports, 10, 18545. https://doi.org/10.1038/s41598-020-75584-7

Kumar, V., Abbas, A. K., & Fausto, N. (2010). Robbins and Cotran Pathologic Basis of Disease (8th ed.). Elsevier.

Leal, E. C., & Carvalho, E. (2014). Cicatrização de Feridas: O Fisiológico e o Patológico [Wound Healing: The Physiologic and the Pathologic]. I, 9(3), 133-143. http://www.revportdiabetes.com/wp-content/uploads/2017/10/RPD-Vol-9-n%C2%BA-3-Setembro-2014-Artigo-de-Revis%C3%A3o-p%C3%A1gs-133-143.pdf

Loh, E. Y. X., Mohamad, N., Fauzi, M. B., Ng, M. H., Ng, S. F., & Mohd Amin, M. C. I. (2018). Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Scientific Reports, 8, 2875. https://doi.org/10.1038/s41598-018-21174-7

Mandelbaum, S., di Santis, E., & Mandelbaum, M. (2003). Cicatrization: Current concepts and auxiliary resources - Part II. Anais Brasileiros de Dermatologia, 78, 521-522. https://doi.org/10.1590/S0365-05962003000500002

Mao, L., Wang, L., Zhang, M., Ullah, M. W., Liu, L., Zhao, W., Li, Y., Ahmed, A. Q., Cheng, H., Shi, Z., & Yang, G. (2021). Engineered adipose tissue constructs for localized cell-based therapy. Advanced Healthcare Materials, 10(5), 2100402. https://doi.org/10.1002/adhm.202100402

Medeiros, A. C., & Dantas-Filho, A. M. (2017). Cicatrização das feridas cirúrgicas. Journal of Surgical and Clinical Research, 7(2), 87-102. https://doi.org/10.20398/jscr.v7i2.11438.

De Sousa Moraes, P. R. F., Saska, S., Barud, H., De Lima, L. R., Da Conceicao Amaro Martins, V., De Guzzi Plepis, A. M., Ribeiro, S. J. L., & Gaspar, A. M. M. (2016). Bacterial cellulose/collagen hydrogel for wound healing. Materials Research, 19(1), 106-116. http://hdl.handle.net/11449/176915

Mohamad, N., Loh, E. Y. X., Fauzi, M. B., Ng, M. H., & Mohd Amin, M. C. I. (2019). Avaliação in vivo de hidrogel de curativo bacteriano de celulose/ácido acrílico contendo queratinócitos e fibroblastos para queimaduras. Droga Delivery e Terapêutica Translacional, 9, 444–452. https://doi.org/10.1007/s13346-017-0475-3

Napavichayanun, S., Yamdech, R., & Aramwit, P. (2016). The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Archives of Dermatological Research, 308(2), 123-132. https://doi.org/10.1007/s00403-016-1621-3

Negut, I., Grumezescu, V., & Grumezescu, A. M. (2018). Treatment Strategies for Infected Wounds. Molecules, 23(9), 2392. https://doi.org/10.3390/molecules23092392

Napavichayanun, S., Ampawong, S., Harnsilpong, T., Angspatt, A., & Aramwit, P. (2018). Inflammatory reaction, clinical efficacy, and safety of bacterial cellulose wound dressing containing silk sericin and polyhexamethylene biguanide for wound treatment. Archives of Dermatological Research, 310(10), 795-805. https://doi.org/10.1007/s00403-018-1871-3

Okuni, I. (2012). Phototherapy in rehabilitation medicine. The Japanese Journal of Anesthesiology, Masui, 61(7), 700-705. https://www.researchgate.net/publication/230617166_Phototherapy_in_rehabilitation_medicine

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.

Pinho, A. M. D. M. R., Kencis, C. C. S., Miranda, D. R. P., Neto, O. M. D. S. (2020). Traumatic perforations of the tympanic membrane: Immediate clinical recovery with the use of bacterial cellulose film. Brazilian Journal of Otorhinolaryngology, 86(6), 727-733. https://doi.org/10.1016/j.bjorl.2019.05.001

Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., & Radecka, I. (2021). Avanços recentes e aplicações de celulose bacteriana em biomedicina. Polímeros, 13, 412. https://doi.org/10.3390/polym13030412

Souza, M., Campos de Araujo, C. K., Alves de Araújo, L., Rodrigues Castelo Branco, C. E., & Filgueiras, M. (2023). Modelos experimentais de cicatrização de feridas: uma revisão integrativa. Peer Review, 5(17), 1–11. https://doi.org/10.53660/651.prw2203

Tizard, I. R. (2023). Veterinary Immunology: An Introduction (10th ed.). Grupo GEN.

Torres, F., Commiaux, S., & Troncoso, O. (2012). Biocompatibility of Bacterial Cellulose Based Biomaterials. Journal of Functional Biomaterials, 3(4), 864-878. https://doi.org/10.3390/jfb3040864

Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330-352. https://doi.org/10.1016/j.carbpol.2016.05.029

Vieira, J. C., Badin, A. Z. D., Calomeno, L. H. A., Teixeira, V., Ottoboni, E., Bailak, M., & Salles Jr, G. (2007). Membrana porosa de celulose no tratamento de queimaduras. Arquivos Catarinenses de Medicina, 36(1), 94-97. https://www.acm.org.br/revista/pdf/artigos/436.pdf

Wang, P. H., Huang, B. S., Horng, H. C., Yeh, C. C., & Chen, Y. J. (2018). Wound healing. Journal of the Chinese Medical Association, 81(2), 94-101. https://doi.org/10.1016/j.jcma.2017.11.002

Published

08/09/2023

How to Cite

PERALTA, R. F. S. .; FERNANDES, S. D. V. .; CUNHA, G. N. .; MOREIRA, D. B. . Viability of the use of bacterial nanoscellulose in the treatment of wounds induced in wistar rats. Research, Society and Development, [S. l.], v. 12, n. 9, p. e2912943175, 2023. DOI: 10.33448/rsd-v12i9.43175. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43175. Acesso em: 16 may. 2024.

Issue

Section

Health Sciences