Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4413

Keywords:

Coconut fiber; Protic ionic liquid; Petroleum; Adsorption.

Abstract

The recent oil spill off the Brazilian coast serves as an alert for research to be carried out that includes biotechnological processes and products for cleaning marine environments. Therefore, this work aims to compare the use of residual coconut fibers (Cocos nucifera L.) in natura, pretreated with Protic Ionic Liquid (PIL) [2-HEA] [Ac] (innovative treatment) and by mercerization/acetylation (traditional treatment) as a biosorbent of petroleum spilled in the marine environment in a hydrodynamic simulation on a laboratory scale. The study of the kinetics and adsorption equilibrium were performed to determine the limiting mechanism of adsorption, as well as the maximum petroleum adsorption capacity for the coconut fibers studied. Characterizations of the fibers were carried out using SEM and FITR, and the kinetics and sorption equilibrium tests with petroleum from the Campos Basin and saline water. It was possible to observe that a minimum time of 5 min of contact between the adsorbent and adsorbent is necessary for biosorption to occur. The fibers treated with PIL (4.63 g/g) had greater sorption capacity, the fiber in natura (3.62 g/g) less capacity and the fiber with mercerization/acetylation treatment (4.26 g/g) has sorption with intermediate values. The kinetic model that best fitted the experimental data was pseudo-second order, indicating chemosorption as the limiting step of adsorption. The sorption equilibrium model chosen was Sips, determining adsorption in multilayer (Freundlich) with low concentrations of petroleum and in monolayer (Langmuir) with high concentrations. Based on these results, it can be said that the coconut fibers (Cocos nucifera L.) treated have a greater capacity to adsorb petroleum than the fibers in natura, and the fibers treated with PIL [2-HEA][Ac] have greater sorption capacity, among those evaluated, to be used in oil spills.

References

Abdelwahab, O., Nasr, S. M. & Thabet, W.M. (2017). Palm fibers and modified palm fibers adsorbents for different oils. Alexandria Engineering Journal, 56 (4), 749-755.

Achinivu, E., Howard, R., Li, G., Gracz, H. & Henderson, W. (2013). Lignin extraction from biomass with protic ionic liquids. Green Chemical, 16, 1114–1119.

Alvarez, V. H., Mattedi, S. & Aznar, M. (2013). Density, refraction índex and vapor-liquid equilibria of N-methyl-2-hydroxyethylammonium butyrate plus (methylacetate or ethyl acetate or propyl acetate) ate several temperatures. Journal of Chemical Thermodynamics, 62, 130-141.

Alvarez V. H., Mattedi, S., Martin-Pastor, M., Aznar, M. & Iglesias, M. (2011). Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}. Journal Chemical Thermodynamics, 43, 997–1010.

American Society for Testing and Materials – ASTM. (1999). ASTM F726-99: Standard Test Method for Sorbent Performance of Adsorbents, ASTM International. West Conshohocken, PA. 6 p.

American Society for Testing and Materials – ASTM. (2011). ASTM D4052: Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter, ASTM International. West Conshohocken, PA. 8 p.

American Society for Testing and Materials – ASTM. (2017). ASTM D97: Standard Test Method for Pour Point of Petroleum Products, ASTM International. West Conshohocken, PA. 7 p.

Annunciado, T. R., Sydenstricker, T. H. D. & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50, 1340–1346.

Anuzyte, E. & Vaisis, V. (2018). Natural oil sorbents modification methods for hydrophobicity improvement. Energy Procedia, 147, 295-300.

Barboza, T. R. & Freitas, R. R. (2019). A bibliometric analysis on impacts of oil spills on sea fishing Un análisis bibliométrico sobre los impactos del derrame de petróleo en la pesca marítima. Research, Society and Development, 8 (1), 1-23.

Beyer, J., Trannum, H. C., Bakke, T., Hodson, P.V. & Collier, T. K. (2016). Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110 (1), 28-51.

Bhardwaj, N. & Bhaskarwar, A. N. (2018). A review on sorbent devices for oil-spill control. Environmental Pollution, 243B, 1758-1771.

Calado, V., Barreto, D. W. & D’Almeida, J. R. M. (2003). Effect of a Two Step Fiber Treatment on the Flexural Mechanical Properties of Sisal-Poliester Composites. Polymers & Polimer Composites, 11(1), 31-36.

Cardoso, C. K. M., Cardoso, R. P. G. & Moreira, I. T. A. (2017). Avaliação de Sorventes Naturais para Remediação de Petróleo Derramado em Águas Marinhas Costeiras: O Estado da Arte e um Estudo de Caso Aplicado. Seminário Estudantil de Produção Acadêmica, 16, 178.

Cheu, S. C, Kong, H., Song, S.T., Johari, K., Saman, N., Yunus, M. A. C. & Mat, H. (2016). Separation of dissolved oil from aqueous solution by sorption onto acetylated lignocellulosic biomass – equilibrium, kinetics and mechanism studies. Journal of Environmental Chemical Engineering, 4 (1), 864-881.

Din, R. U., Nikogeorgos, N., Jellesen, M. S., Shabadi, R. & Ambat, R. (2017). Influence of steam-based pre-treatment using acidic chemistries on the adhesion performance of powder coated aluminium alloy AA6060. International Journal of Adhesion and Adhesives, 74, 167-176.

El-Din, G. A., Amer, A. A., Malsh, G. & Hussein, M. (2018). Study on the use of banana peels for oil spill removal. A review of Alexandria Engineering Journal, 57, 2061–2068.

Empresa de Pesquisa Energética – EPE. (2018). Relatório Parcial 2: Cenários de Demanda para o PNE 2050. Rio de Janeiro. 34 p.

García-Garrido, V. J., Ramos, A., Mancho, A. M., Coca, J. & Wiggins, S. (2016). A dynamical systems perspective for a real-time response to a marine oil spill. Marine Pollution Bulletin, 112 (1-2), 201-210.

Halder, P., Kundu, S., Patel, S., Setiawan, A., Atkin, R., Parthasarthy, R., Paz-Ferreiro, J., Surapaneni, A. & Shah, K. (2019). Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 105, 268-292.

Hu, Y., Wang, L. & Li, Z. (2018). Superheated steam treatment on wheat bran: Enzymes inactivation and nutritional attributes retention, LWT – Food Science and Technology, 91, 446-452.

Ifelebuegu, A. O., Nguyen, T. V. A., Ukotije-Ikwuti, P. & Momoh, Z. (2015). Liquid-phase sorption characteristics of human hair as a natural oil spill sorbent. Journal of Environmental Chemical Engineering, 3 (2), 938-943.

Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis – IBAMA. (2019). Manchas de Óleo Litoral do Nordeste. Acess in: 15/11/19, in http://www.ibama.gov.br/manchasdeoleo.

International Tanker Owners Pollution Federation – ITOPF. (2019). Oil Tanker Spill Statistics 2018. Acess in: 20/10/2019, in https://www.itopf.org/knowledge-resources/data-statistics/statistics/.

International Tanker Owners Pollution Federation – ITOPF. (2014). Contingency & Response Planning, 2014. Acess in: 08/04/19, in https://www.itopf.org/knowledge-resources/documents-guides/contingency-response-planning/.

Kaili, Q., Weijun, T., Jie, B., Liang, W., Jing, Z., Zhaoyang, D. & Xiaoxi, G. (2019). Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review. Journal of The Taiwan Institute of Chemical Engineers, 97, 227-236.

Lemos, G. S., Souza, M. S. S., Aleixo, N. V. S., Lima, E. N. & Cotta, J. A. O. (2020). Ecotoxicological tests with Eisenia fétida for the evaluation of areas allegedly contaminated with oil derivates in municipality of João Monlevade/MG. Research, Society and Development, 9 (6), 1-20.

Li, B., Asikkala, J., Filpponen, I. & Argyropoulos, D. S. (2010). Factors affecting wood dissolution and regeneration of ionic liquids. Industrial and Engineering Chemistry Research, 49, 2477– 2484.

Luis-Zarate, V. H., Rodriguez-Hernandez, C., Alatriste-Mondragon, F., Chazaro-Ruiz, L. F., Rangel-Mendez, J. R. (2018). Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as power a source when exhausted. Journal of Environmental Managenment, 211, 103-111.

Miranda, C. S., Fiuza, R. P., Carvalho, R. F. & José, N. M. (2015). Efeito dos tratamentos superficiais nas propriedades do bagaço da fibra de piaçava Attalea funifera Martius. Química Nova, 38 (2), 161-165.

Mohtar, S. S., Busu, T. N. Z. T. M., Noor, A. M. M., Shaari, N. & Mat, H. (2017). An ionic liquid treatment and fractionation of cellulose, hemicellulose an lignin from oil palm empyt fruit bunch. Carbohydrade Polymers, 166, 291-299.

Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. F. S., Santos, A. M. P., Martins, C. M. S., Silva, C. S. & Jesus, R. S. (2011). Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical Journal, 99, 376-382.

Moreira, I. T. A., Oliveira, O. M. C., Triguis, J. A., Queiroz, A. E. S., Ferreira, S. L. C., Martins, C. M. S., Silva, A. C. M. & Falcão, B. A. (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Marine Pollution Bulletin, 67, 130-136.

Moreira, I. T. A., Oliveira, O. M. C., Silva, C. S., Rios, M. C., Queiroz, A. F. S., Assunção, R. V. & Carvalho, A. P. N. (2014). Chemometrics applied in laboratory study on formation of oil-spm aggregates (OSA) – a contribution to ecological evaluation. Microchemical Journal, 118, 198-202.

Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., dos Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of Bioremediation for the Degradation of Petroleum Hydrocarbons in the Presence of Metals in Mangrove Simulated. Chean Soil Air Water, 44 (6), 631-637.

Morndim-Giannetti, A. A, Campos, P. R., Viana, A. P., Martinez, R. P. T., Daminato, M., Silva, R. C. & Santoro, M. A. (2017). Influência de líquidos iônicos no tratamento da palha de milho para a produção de bioetanol. The Journal of Engineering and Exact Sciences, 3 (2), 130-143.

Mothér, C. H. & Júnior, C. S. S. (2007). Petróleo pesado e ultrapesado: Reservas e produção mundial. TN Petróleo, 57, 76-81.

Nacional Oceanic and Atmospheric Administration – NOAA. (2019). Deepwater Horizon Oil Spill. Access in: 20/10/2019, in https://response.restoration.noaa.gov/oil-and-chemical-spills/significant-incidents/deepwater-horizon-oil-spill.

Nnaji, N. J. N., Onuegbu, T. U., Odokwe, O., Ezeh, G. C. & Ngwu, A. P. (2016). An approach for the reuse of Dacryodes edulis leaf: Characterization, acetylation and crude oil sorption studies. Journal of Environmental Chemical Engineering, 4 (3), 3205-3216.

Nwadiogbu, J. O., Ajiwe, V. I. E. & Okoye, P. A. C. (2016). Removal of crude oil from aqueous medium by sorption on hydrofobic corncobs: Equilibrium and kinetic studies. Journal of Taibah University for Science, 10 (1), 56-63.

Peric, B., Sierra, J., Marti, E., Cruanas, R. & Garau, M. A. (2014). A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids. Chemosphere, 108, 418–425.

Pessôa, T. S., Ferreira, L. E. L., Silva, M. P., Neto, L. M. P., Nascimento, B. F., Fraga, T. J. M., Jaguaribe, E. F., Cavalcante, J. V. & Sobrinho, M. A. M. (2019). Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. Journal of Cleaner Production, 240, 118047.

Ramirez, M. I., Arevalo, A. P., Sotomayor, S. & Bailon-Moscoso, N. (2017). Contamination by oil crude extraction – Refinement and their effects on human helth. Environmental Pollution, 231 (1), 415-425.

Rocha, E. G. A., Costa, A. C. & Aznar, M. (2016). Use of Protoct Ionic Liquids as Biomass Pretreatment for Lignocellulosic Ethanol Production. Chemical Engeneering Transactions, 37, 397-402.

Sá, R. M., Miranda, C. S. & José, N. M. (2015). Preparation and Characterization of Nanowhiskers Cellulose from Fiber Arrowroot (Maranta arundinacea). Materials Research, 18, 225-229.

Saleen, J., Riaz, M. A. & Gordon, M. (2018). Oil sorbents from plastic wastes and polymers: A review. Journal of Hazardous Materials, 341, 424-437.

Semerci, I. & Güler, F. (2018). Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops & Products, 125, 588-595.

Silva, A. S., Inoue, H., Endo, T., Yano, S. & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101, 7402-7409.

Soares, D., Demeke, M. M., Foulquié-Moreno, M. R., Velde, M. V., Verplaetse, A., Fernandes, A. A. R., Theyelein, J. M. & Fernandes, P. M. B. (2016). Green coconut mesocarp pretreated by alcaline process as raw material for bioethanol production. Bioresource Technology, 216, 744-753.

Telli, M. D. & Valia, S. P. (2013). Acetylation of banana fiber to improve oil absorbency. Carbohidrade Polymers, 92 (1), 328-333.

Wang, J., Zheng, Y. & Wang, A. (2013). Investigation of acetylated kapok fibers on the sorption of oil in water. Journal of Environmental Sciences, 25 (2), 246-253.

Wei, Q. F., Mather, R. R., Fotheringham, A. F. & Yang, R. D. (2003). Evaluation of nonwoven polypropylene oil sorbents in marine oil spill recovery. Marine Pollution Bulletin, 46 (6), 780–783.

Zubaid, I. A. H. A., Tamimi, A. K. A. & Admed, H. (2016). Remediation of water from crude oil spill using a fibrous sorbent. Environmental Technology & Innovation, 6, 105-114.

Downloads

Published

25/05/2020

How to Cite

CÉLIA KARINA MAIA; RAFAELA SILVA GARCES DE; VERÔNICA LIMA DA; ANA CAROLINA LIMA EYNG; SILVANA; ÍCARO THIAGO ANDRADE; ANA KATERINE DE CARVALHO LIMA. Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers. Research, Society and Development, [S. l.], v. 9, n. 7, p. e523974413, 2020. DOI: 10.33448/rsd-v9i7.4413. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4413. Acesso em: 26 apr. 2024.

Issue

Section

Engineerings