Development of VLPs (like particle virus) as potential recombinant vaccine against dengue virus (DENV)
DOI:
https://doi.org/10.33448/rsd-v12i13.44384Keywords:
Dengue; VLPs; Disease; Arbovirus.Abstract
Dengue is a serious disease, the eradication of which has not yet been achieved in much of the world. The absence of an effective and promising vaccine to prevent the disease is one of the main factors contributing to this situation. The development of Virus Like Particles (VLPs) has proven to be a promising strategy in the search for an effective vaccine against Dengue. According to the literature, dengue is characterized as one of the main public health problems worldwide. Thus, it is described as an infectious disease considered the main arbovirus that affects humans today. However, no specific treatment or vaccine is currently available on the market. Therefore, the production of a multivalent vaccine capable of inducing an immunological response against the four serotypes of the virus (DENV) would be the best option for preventing the disease. Considering that virus-like particle (VLP) vaccines have achieved positive results in preventing other contagious diseases, it is possible to question whether this type of vaccine would not be effective if applied to dengue prevention. Given this scenario, we can understand and justify the importance of this work, since studies on the application of VLP in the prevention of dengue can help in the development of new methods of controlling this disease.
References
Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology, 10(11), 787-796.
Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature reviews Immunology 10 (11), 787-796.
Bhatt, S. et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.Halstead S.B. (2007). Dengue. The Lancet, 370(9599), 1644–1652.
Chackerian, B. (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines. 6(3):381-90.
Chackerian, B. (2007). Virus-like particles: flexible platforms for vaccine development. Expert Review of Vaccines, 6(3), 381-390.
Chackerian, B. (2014). Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines, 6(3), 381-390.
Crill, W. D., Roehrig, J. T. (2001). Monoclonal Antibodies That Bind to Domain III of Dengue Virus E Glycoprotein Are the Most Efficient Blockers of Virus Adsorption to Vero Cells. Journal of Virology. 75(16):7769–7773.
Garg, H., Sedano, M., Plata, G., Punke, E. B., & Joshi, A. (2017). Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. Journal of virology 91(20).
Grgacic, E. V. L., & Anderson, D. A. (2006). Virus-like particles: Passport to immune recognition. Methods, 40(1), 60–65.
Grgacic, E. V., & Anderson, D. A. (2006). Virus-like particles: passport to immune recognition. Methods, 40(1), 60-65.
Halstead S.B., O'Rourke E.J. (1977). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. Journal of Experimental Medicine, 146(1), 201-217.
Halstead, S. B. (2003). Dengue: overview and history. In Dengue Virus (pp. 1-28). Springer, Vienna.
Halstead, S. B., Russell, P. K. (2017) Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 35(16), 1959-1966.
Halstead, S. B., & Cohen, S.N. (2015). Dengue Hemorrhagic Fever at 60 Years: Early Evolution of Concepts of Causation and Treatment. Microbiology Spectrum, 3(3), 1-23.
Kim, D., Hoory, T., Monie, A., Ting, J. P., 2017. The role of dendritic cells in the innate immune system. Microbes and Infection 2 (3), 257-272.
Kushnir, N., Streatfield, S. J., & Yusibov V. (2012). Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 31(1), 58-83.
Kushnir, N., Streatfield, S. J., Yusibov, V. (2012). Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31(1), 58-83.
Liljeström, P, & Garoff, H. (1991) Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol. 1991;65(1):147-154.
Liu, W. J., Liu, X. S., Zhao, K. N. et al. (2010) Immunogenicity of dengue virus type 2-like particles expressed in insect cell line Sf9. Vaccine. 28(4):922–927.
Liu, M. A. (2010). Immunologic Basis of Vaccine Vectors. Immunity, 33(4), 504-515.
Liu, M. A., Ulmer, J. B., & Otten, G. R. (2016). Peptide-based vaccines and virus-like particles: combined strategies for the development of potent and safe adjuvants. Current opinion in molecular therapeutics, 18(1), 14-20.
Liu, Y., Liu, J., & Cheng, G. (2010) A track of evolving new biotechnology derived Dengue virus-like particle vaccine. Current Opinion in Virology 10: 14–20.
Liu, Y., Liu, J., & Cheng, G. (2016). Vaccines and immunization strategies for dengue prevention Emerging Microbes & Infections volume 5.
Lopez-Sagaseta, J., Malito, E., Rappuoli, R., & Bottomley, M. J. (2016). Self-assembling protein nanoparticles in the design of vaccines. Computational and Structural Biotechnology Journal, 14, 58-68.
Lorenz, I. C., Allison, S. L., Heinz, F. X., & Helenius, A. (2015). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. Journal of Virology, 79(7), 4462-4470.
Lorenzo, G., Lopez-Gil, E., Ortego, J., & Brun, A. (2015). Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Vaccine, 33(17),2080–2087.
Lua L. H. L., Connors N. K., Sainsbury F., Chuan Y. P., Wibowo N., & Middelberg A. P. J. (2014). Bioengineering virus-like particles as vaccines. Biotechnology and Bioengineering, 111(3), 425-440.
Mani, S. et al. (2013) Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. Journal of virological methods 189 (1), 93-98.
Mani, S., Tripathi, L., Raut, R., et al. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One. 2013;8(5): e64595.
Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman T., et al. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS ONE, 8(5), e64595.
Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., Sood, R., Galav, A., Deshmukh, R., Rao, P. V. L., Kameyama, T., Krol, E., Singh, H. R. S. B. K. P. J. P. M. (2010). Pichia pastoris-expressed dengue virus type 2 envelope domain III elicits virus-neutralizing antibodies. Journal of Virological Methods, 167(1), 10–16.
Mani, S., Tripathi, L., Raut, R., Tyag,i P., Arora, U., Barman T., Sood, R., Galav, A., Deshmukh R., Rao P. V. L., Kumar, J. S. (2016) Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Frontiers in Microbiology 7:1519.
Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., & Swaminathan S. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PloS one, 8(5), e64595.
Mani, S., Tripathi, L., Raut, R., Tyagi, P., Arora, U., Barman, T., & Swaminathan, S. (2013). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One, 8(5), e64595.
Manoff, S. B., George, S. L., Bett, A. J., Yelmene, M. L., Dhanasekaran, G., Eggemeyer, L., & Casimiro, D. R. (2015). Preclinical and clinical development of a dengue recombinant subunit vaccine. Vaccine, 33(50), 7126-7134.
Metz SW, Thomas A, White L et al., Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J. 2018;15(1):60.
Metz, S. W., Martínez Murillo, P. A., & Pijlman, G. P. (2018). Chimeric dengue viruses with enhanced exposure of the E dimer epitope improve antibody-dependent enhancement in mice and virus neutralization in monkeys. Journal of Virology, 92(21), e00851-18.
Metz, S. W., Thomas A., White L., Stoops M., Corten M., Hannemann H. & Diamond M. S. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal volume 15.
Metz, S. W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H., & de Silva A. M. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology journal 15(1), 60.
Metz, S. W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H.& de Silva, A. M. (2018). Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virology Journal,15(60),1-11.
Middelberg, A. P. J. (2015). Preparative protein refolding. Trends Biotechnol 20(10),437-443.
Noad R., & Roy P. (2003). Virus-like particles as immunogens. Trends in Microbiology, 11(9), 438-444.
Pushko, P., Pumpens, P., & Grens, E. (2013) Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology;56(3):141-65.
Sahdev, S., Khattar, S. K., & Saini, K. S. (2014). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 385(1-2), 1-13.
Schultz-Cherry, S., Dybing, J. K., Davis, N. L., Williamson, C., Suarez, D. L., Johnston R., & Perdue M. L. (2000). Virus-like particles containing multiple antigenic proteins of avian influenza virus induce protection against lethal challenge in chickens Poultry Science 79:126-134.
Silva, L J., & Angerami, R. N. (2008) Arboviroses no Brasil contemporâneo. In: Viroses emergentes no Brasil [online]. Editora FIOCRUZ, 37-56. Temas em Saúde collection. https://doi.org/10.7476/9788575413814.0005.
Swaminathan G. & Khanna N. (2019). Recombinant Protein Vaccines for Dengue – How Close Are We? Expert Review of Vaccines. Vol 18(9)
Swaminathan, G., Thoryk, E. A., Cox, K. S., Smith, J. S., Wolf, J. J. & Barnett, S. W. (2014). A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Scientific Reports, 4, 4971.
Vicente T., Roldão A., Peixoto C., Carrondo M. J., & Alves P. M. (2011). Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology, 107, S42-S48.
Vicente T., Roldão A., Peixoto C., Carrondo M. J. T., Alves P. M. (2011). Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107: S42-S48.
Wahala W. M. P. B., Kraus A. A., Haymore L. B., Accavitti-Loper M. A., de Silva A. M. (2009). Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody Virology Journal volume 6.
World Health Organization (WHO). (2019). Dengue and severe dengue. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
World Health Organization. Dengue and severe dengue [Internet]. Geneva: World Health Organization; 2019 [cited 2020 Mar 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
Zhao H., Fernandez E., Dowd K. A., Speer S. D., Platt D. J., Gorman M. J. et al. (2016). Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 166(4), 1016-1027.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ariane Aparecida Reimberg; Gabrielle Ferrari Santos; Erika Gomes Vidal da Silva; Ermi Simões; Beatriz Rodrigues de Almeida; Deny Anderson dos Santos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.