Psilocybin: Exploring its potential for reversal of neurofunctional alterations promoted by Major Depressive Disorder
DOI:
https://doi.org/10.33448/rsd-v13i5.44891Keywords:
Psilocybin; Therapeutic use; Depression.Abstract
Introduction: Major Depressive Disorder globally affects around 5% of the population, with a complex etiology involving interactions between the brain, mind and environment. Around 50% of cases do not respond to standard pharmacological treatment, highlighting the need for innovative therapeutic approaches. Objective: This research aims to explore the therapeutic potential of psilocybin in major depressive disorder, analyzing its interaction with serotonergic receptors, and investigating the effects of the substance on brain connectivity. Methodology: This is a narrative review of the literature, searching for articles in the Pubmed database. The selection considered inclusion criteria, resulting in a sample of articles relevant for the analysis. Results and Discussion: The results reveal that psilocybin, a serotonergic agonist, induces long-lasting and rapid therapeutic effects, modulating receptors such as 5-HT2AR. The substance promotes neuroplasticity, improving brain connectivity and reducing depressive symptoms. Conclusion: The effectiveness of psilocybin in treating depression points to an innovative understanding of neurobiological mechanisms. Its ability to induce neuroplasticity suggests promising implications, highlighting the safety of combination with traditional therapies.
References
Alonso, J. F., Romero, S., Mañanas, M. À., & Riba, J. (2015). Serotonergic psychedelics temporarily modify information transfer in humans. The International Journal of Neuropsychopharmacology, 18(8), pyv039. https://doi.org/10.1093/ijnp/pyv039
Andrade, M. C. R. (2021). O papel das revisões de literatura na produção e síntese do conhecimento científico em Psicologia. Gerais: Revista Interinstitucional de Psicologia, 14(SPE), 1–5. https://doi.org/10.36298/gerais202114e23310
Barnett, L., Muthukumaraswamy, S. D., Carhart-Harris, R. L., & Seth, A. K. (2020). Decreased directed functional connectivity in the psychedelic state. NeuroImage, 209, 116462. https://doi.org/10.1016/j.neuroimage.2019.116462
Barrett, F. S., Doss, M. K., Sepeda, N. D., Pekar, J. J., & Griffiths, R. R. (2020). Emotions and brain function are altered up to one month after a single high dose of psilocybin. Scientific Reports, 10(1), 2214. https://doi.org/10.1038/s41598-020-59282-y
Becker, A. M., Holze, F., Grandinetti, T., Klaiber, A., Toedtli, V. E., Kolaczynska, K. E., Duthaler, U., Varghese, N., Eckert, A., Grünblatt, E., & Liechti, M. E. (2022). Acute Effects of Psilocybin After Escitalopram or Placebo Pretreatment in a Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Subjects. Clinical Pharmacology and Therapeutics, 111(4), 886–895. https://doi.org/10.1002/cpt.2487
Bogenschutz, M. P., Forcehimes, A. A., Pommy, J. A., Wilcox, C. E., Barbosa, P. C. R., & Strassman, R. J. (2015). Psilocybin-assisted treatment for alcohol dependence: A proof-of-concept study. Journal of Psychopharmacology (Oxford, England), 29(3), 289–299. https://doi.org/10.1177/0269881114565144
Boulougouris, V., Glennon, J. C., & Robbins, T. W. (2008). Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 33(8), 2007–2019. https://doi.org/10.1038/sj.npp.1301584
Bouso, J. C., Palhano-Fontes, F., Rodríguez-Fornells, A., Ribeiro, S., Sanches, R., Crippa, J. A. S., Hallak, J. E. C., de Araujo, D. B., & Riba, J. (2015). Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 25(4), 483–492. https://doi.org/10.1016/j.euroneuro.2015.01.008
Brys, I., Barrientos, S. A., Ward, J. E., Wallander, J., Petersson, P., & Halje, P. (2023). 5-HT2AR and NMDAR psychedelics induce similar hyper-synchronous states in the rat cognitive-limbic cortex-basal ganglia system. Communications Biology, 6(1), 737. https://doi.org/10.1038/s42003-023-05093-6
Buchborn, T., Schröder, H., Höllt, V., & Grecksch, G. (2014). Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. Journal of Psychopharmacology (Oxford, England), 28(6), 545–552. https://doi.org/10.1177/0269881114531666
Cai, H., Zhu, J., & Yu, Y. (2020). Robust prediction of individual personality from brain functional connectome. Social Cognitive and Affective Neuroscience, 15(3), 359–369. https://doi.org/10.1093/scan/nsaa044
Calder, A. E., & Hasler, G. (2023). Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology, 48(1), Artigo 1. https://doi.org/10.1038/s41386-022-01389-z
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A., Wise, R. G., & Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences of the United States of America, 109(6), 2138–2143. https://doi.org/10.1073/pnas.1119598109
Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain: A Journal of Neurology, 133(Pt 4), 1265–1283. https://doi.org/10.1093/brain/awq010
Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H., & Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry, 78(5), 481–489. https://doi.org/10.1001/jamapsychiatry.2020.328
Doss, M. K., Považan, M., Rosenberg, M. D., Sepeda, N. D., Davis, A. K., Finan, P. H., Smith, G. S., Pekar, J. J., Barker, P. B., Griffiths, R. R., & Barrett, F. S. (2021). Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Translational Psychiatry, 11(1), 574. https://doi.org/10.1038/s41398-021-01706-y
Effinger, D. P., Quadir, S. G., Ramage, M. C., Cone, M. G., & Herman, M. A. (2023). Sex-specific effects of psychedelic drug exposure on central amygdala reactivity and behavioral responding. Translational Psychiatry, 13(1), 119. https://doi.org/10.1038/s41398-023-02414-5
Ekins, T. G., Brooks, I., Kailasa, S., Rybicki-Kler, C., Jedrasiak-Cape, I., Donoho, E., Mashour, G. A., Rech, J., & Ahmed, O. J. (2023). Cellular rules underlying psychedelic control of prefrontal pyramidal neurons. bioRxiv: The Preprint Server for Biology, 2023.10.20.563334. https://doi.org/10.1101/2023.10.20.563334
Erkizia-Santamaría, I., Alles-Pascual, R., Horrillo, I., Meana, J. J., & Ortega, J. E. (2022). Serotonin 5-HT2A, 5-HT2c and 5-HT1A receptor involvement in the acute effects of psilocybin in mice. In vitro pharmacological profile and modulation of thermoregulation and head-twich response. Biomedicine & Pharmacotherapy, 154, 113612. https://doi.org/10.1016/j.biopha.2022.113612
Fisher, P. M., & Hariri, A. R. (2012). Linking variability in brain chemistry and circuit function through multimodal human neuroimaging. Genes, Brain, and Behavior, 11(6), 633–642. https://doi.org/10.1111/j.1601-183X.2012.00786.x
Fullana, M. N., Ruiz-Bronchal, E., Ferrés-Coy, A., Juárez-Escoto, E., Artigas, F., & Bortolozzi, A. (2019). Regionally selective knockdown of astroglial glutamate transporters in infralimbic cortex induces a depressive phenotype in mice. Glia, 67(6), 1122–1137. https://doi.org/10.1002/glia.23593
González-Arias, C., Sánchez-Ruiz, A., Esparza, J., Sánchez-Puelles, C., Arancibia, L., Ramírez-Franco, J., Gobbo, D., Kirchhoff, F., & Perea, G. (2023). Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Molecular Psychiatry, 28(9), 3856–3873. https://doi.org/10.1038/s41380-023-02269-8
González-Maeso, J., Weisstaub, N. V., Zhou, M., Chan, P., Ivic, L., Ang, R., Lira, A., Bradley-Moore, M., Ge, Y., Zhou, Q., Sealfon, S. C., & Gingrich, J. A. (2007). Hallucinogens Recruit Specific Cortical 5-HT2A Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron, 53(3), 439–452. https://doi.org/10.1016/j.neuron.2007.01.008
Goodwin, G. M., Aaronson, S. T., Alvarez, O., Atli, M., Bennett, J. C., Croal, M., DeBattista, C., Dunlop, B. W., Feifel, D., Hellerstein, D. J., Husain, M. I., Kelly, J. R., Lennard-Jones, M. R., Licht, R. W., Marwood, L., Mistry, S., Páleníček, T., Redjep, O., Repantis, D., & Malievskaia, E. (2023). Single-dose psilocybin for a treatment-resistant episode of major depression: Impact on patient-reported depression severity, anxiety, function, and quality of life. Journal of Affective Disorders, 327, 120–127. https://doi.org/10.1016/j.jad.2023.01.108
Goodwin, G. M., Croal, M., Feifel, D., Kelly, J. R., Marwood, L., Mistry, S., O’Keane, V., Peck, S. K., Simmons, H., Sisa, C., Stansfield, S. C., Tsai, J., Williams, S., & Malievskaia, E. (2023). Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 48(10), 1492–1499. https://doi.org/10.1038/s41386-023-01648-7
Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., Cosimano, M. P., & Klinedinst, M. A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. Journal of Psychopharmacology (Oxford, England), 30(12), 1181–1197. https://doi.org/10.1177/0269881116675513
Grimm, O., Kraehenmann, R., Preller, K. H., Seifritz, E., & Vollenweider, F. X. (2018). Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 28(6), 691–700. https://doi.org/10.1016/j.euroneuro.2018.03.016
Gukasyan, N., Davis, A. K., Barrett, F. S., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., & Griffiths, R. R. (2022). Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: Prospective 12-month follow-up. Journal of Psychopharmacology (Oxford, England), 36(2), 151–158. https://doi.org/10.1177/02698811211073759
Johnson, M. W., Garcia-Romeu, A., & Griffiths, R. R. (2017). Long-term follow-up of psilocybin-facilitated smoking cessation. The American Journal of Drug and Alcohol Abuse, 43(1), 55–60. https://doi.org/10.3109/00952990.2016.1170135
Kaare, M., Jayaram, M., Jagomäe, T., Singh, K., Kilk, K., Leevik, M., Varul, J., Leidmaa, E., Visnapuu, T., Nõmm, H., Rähn, K., Plaas, M., Lilleväli, K., Schäfer, M. K. E., Philips, M. A., & Vasar, E. (2022). Depression-associated Negr1 gene-deficiency induces alterations in the monoaminergic neurotransmission enhancing time-dependent sensitization to amphetamine in mice. Neuroscience Applied, 1, 100646. https://doi.org/10.1016/j.nsa.2022.100646
Karaki, S., Becamel, C., Murat, S., Mannoury la Cour, C., Millan, M. J., Prézeau, L., Bockaert, J., Marin, P., & Vandermoere, F. (2014). Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Molecular & Cellular Proteomics: MCP, 13(5), 1273–1285. https://doi.org/10.1074/mcp.M113.036558
Kelly, J. R., Baker, A., Babiker, M., Burke, L., Brennan, C., & O’Keane, V. (2022). The psychedelic renaissance: The next trip for psychiatry? Irish Journal of Psychological Medicine, 39(4), 335–339. https://doi.org/10.1017/ipm.2019.39
Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Human Brain Mapping, 36(8), 3137–3153. https://doi.org/10.1002/hbm.22833
Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Zarandi, S. S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A., & Olson, D. E. (2018). Psychedelics Promote Structural and Functional Neural Plasticity. Cell reports, 23(11), 3170–3182. https://doi.org/10.1016/j.celrep.2018.05.022
Madsen, M. K., Stenbæk, D. S., Arvidsson, A., Armand, S., Marstrand-Joergensen, M. R., Johansen, S. S., Linnet, K., Ozenne, B., Knudsen, G. M., & Fisher, P. M. (2021). Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. European Neuropsychopharmacology, 50, 121–132. https://doi.org/10.1016/j.euroneuro.2021.06.001
Mason, N. L., Kuypers, K. P. C., Müller, F., Reckweg, J., Tse, D. H. Y., Toennes, S. W., Hutten, N. R. P. W., Jansen, J. F. A., Stiers, P., Feilding, A., & Ramaekers, J. G. (2020). Me, myself, bye: Regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 45(12), 2003–2011. https://doi.org/10.1038/s41386-020-0718-8
Mertens, L. J., Wall, M. B., Roseman, L., Demetriou, L., Nutt, D. J., & Carhart-Harris, R. L. (2020). Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. Journal of Psychopharmacology (Oxford, England), 34(2), 167–180. https://doi.org/10.1177/0269881119895520
Moliner, R., Girych, M., Brunello, C. A., Kovaleva, V., Biojone, C., Enkavi, G., Antenucci, L., Kot, E. F., Goncharuk, S. A., Kaurinkoski, K., Kuutti, M., Fred, S. M., Elsilä, L. V., Sakson, S., Cannarozzo, C., Diniz, C. R. A. F., Seiffert, N., Rubiolo, A., Haapaniemi, H., … Castrén, E. (2023). Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nature Neuroscience, 26(6), 1032–1041. https://doi.org/10.1038/s41593-023-01316-5
Nikolič, M., Viktorin, V., Zach, P., Tylš, F., Dudysová, D., Janků, K., Kopřivová, J., Kuchař, M., Brunovský, M., Horáček, J., & Páleníček, T. (2023). Psilocybin intoxication did not affect daytime or sleep-related declarative memory consolidation in a small sample exploratory analysis. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 74, 78–88. https://doi.org/10.1016/j.euroneuro.2023.04.019
Rizzolatti, G., Semi, A. A., & Fabbri-Destro, M. (2014). Linking psychoanalysis with neuroscience: The concept of ego. Neuropsychologia, 55, 143–148. https://doi.org/10.1016/j.neuropsychologia.2013.10.003
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20, v–vi. https://doi.org/10.1590/S0103-21002007000200001
Siegel, J. S., Subramanian, S., Perry, D., Kay, B., Gordon, E., Laumann, T., Reneau, R., Gratton, C., Horan, C., Metcalf, N., Chacko, R., Schweiger, J., Wong, D., Bender, D., Padawer-Curry, J., Raison, C., Raichle, M., Lenze, E. J., Snyder, A. Z., … Nicol, G. (2023). Psilocybin desynchronizes brain networks. medRxiv: The Preprint Server for Health Sciences, 2023.08.22.23294131. https://doi.org/10.1101/2023.08.22.23294131
Skosnik, P. D., Sloshower, J., Safi-Aghdam, H., Pathania, S., Syed, S., Pittman, B., & D’Souza, D. C. (2023). Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: Relationship to symptoms. Journal of Psychopharmacology (Oxford, England), 37(7), 687–697. https://doi.org/10.1177/02698811231179800
Smigielski, L., Scheidegger, M., Kometer, M., & Vollenweider, F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage, 196, 207–215. https://doi.org/10.1016/j.neuroimage.2019.04.009
Sun, J., Ma, Y., Guo, C., Du, Z., Chen, L., Wang, Z., Li, X., Xu, K., Luo, Y., Hong, Y., Yu, X., Xiao, X., Fang, J., & Lu, J. (2023). Distinct patterns of functional brain network integration between treatment-resistant depression and non treatment-resistant depression: A resting-state functional magnetic resonance imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 120, 110621. https://doi.org/10.1016/j.pnpbp.2022.110621
Thomas, P. J., Leow, A., Klumpp, H., Phan, K. L., & Ajilore, O. (2023). Default Mode Network Hypoalignment of Function to Structure Correlates With Depression and Rumination. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2023.06.008
Vancappel, A., Dansou, Y., Godin, O., Haffen, E., Yrondi, A., Stéphan, F., Richieri, R., Molière, F., Horn, M., Allauze, E., Genty, J., Bouvard, A., Dorey, J., Meyrel, M., Camus, V., Fond, G., Péran, B., Walter, M., Anguill, L., … El-Hage, W. (2021). Cognitive impairments in treatment-resistant depression: Results from the French cohort of outpatients (FACE-DR). Journal of Affective Disorders Reports, 6, 100272. https://doi.org/10.1016/j.jadr.2021.100272
Vosgerau, D. S. R., & Romanowski, J. P. (2014). Estudos de revisão: Implicações conceituais e metodológicas. Revista Diálogo Educacional, 14(41), 165–190.
Wang, Q.-S., Tian, J.-S., Cui, Y.-L., & Gao, S. (2014). Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience, 275, 365–373. https://doi.org/10.1016/j.neuroscience.2014.06.032
World Health Organization. (2023, março 31). Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/detail/depression
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lucas Ferrari da Silva Mendes; Anne Kaline Marques Portela Leal; Mauro Ricardo Barros Bilibio; Silana Rosa Soares Brito; Maria Yasmin de Carvalho Noronha; Paulo Ricardo de Sousa e Silva Moura; Stanley Janary Ferreira Araújo Junior; João Otávio Rodrigues Dias
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.