Propofol effects over intracranial pressure waveform and cerebral hemodynamics: A case report

Authors

DOI:

https://doi.org/10.33448/rsd-v13i2.44982

Keywords:

Cerebrovascular circulation; Intracranial pressure; Propofol; Anesthesia; Postoperative care.

Abstract

Introduction: Few reports have been dedicated on assessing cerebral hemodynamics (CH) and intracranial compliance (ICC) in non-primary neurological patients. Objective: The present study aims to observe the anesthetic influence of propofol on CH and ICC using noninvasive monitoring techniques in the immediate postoperative period. Methodology: This is a case report in which CH and ICC were assessed noninvasively using transcranial Doppler (TCD) and a skull deformation sensor (B4C) respectively, in the immediate postoperative period of a patient just after cardiac revascularization. After exclusion of volemic depletion, TCD and B4C parameters indicated reduction in cerebral blood flow what would be attributed to propofol infusion during surgery. After endovenous additional volume administration and arterial pressure elevation, TCD and B4C parameters improved. Final Considerations: It was possible observing cerebrovascular influences of propofol in the immediate postoperative period, by means of neurological ancillary techniques. Noninvasive neuromonitoring is a way to assess changes in brain physiology that may occur subtly and influence in non-primary neurological patients outcomes.

References

Aldrich, E. F., Eisenberg, H. M., Saydjari, C., Luerssen, T. G., Foulkes, M. A., Jane, J. A., Marshall, L. F., Marmarou, A., & Young, H. F. (1992). Diffuse brain swelling in severely head-injured children. Journal of Neurosurgery, 76(3), 450–454. https://doi.org/10.3171/jns.1992.76.3.0450

Allam, M. M., Almasry, H. A., Ahmed, S., Taha, Y. G., & Oraby, M. I. (2020). Evaluation of cerebrovascular hemodynamics in patients with idiopathic intracranial hypertension using transcranial Doppler. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 56(1). https://doi.org/10.1186/s41983-020-00250-8

Bouzat, P., Sala, N., Payen, J.-F., & Oddo, M. (2013). Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Annals of Intensive Care, 3(1), 23. https://doi.org/10.1186/2110-5820-3-23

Brasil, S. (2022). Intracranial pressure pulse morphology: the missing link? Intensive Care Medicine. https://doi.org/10.1007/s00134-022-06855-2

Brasil, S., Fontoura, J., Ricardo, Manoel Jacobsen Teixeira, Sá, M., & Wellingson Silva Paiva. (2021). A Novel Non-invasive Technique for Intracranial Pressure Waveform Monitoring in Critical Care. Journal of Personalized Medicine, 11(12), 1302–1302. https://doi.org/10.3390/jpm11121302

Bruce, D. A., Alavi, A., Bilaniuk, L., Dolinskas, C., Obrist, W., & Uzzell, B. (1981). Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema.” Journal of Neurosurgery, 54(2), 170–178. https://doi.org/10.3171/jns.1981.54.2.0170

Gu, J., Yang, T., Kuang, Y., Huang, H., Kong, B., Shu, H., Yu, S., & Zhang, J. (2014). Comparison of the safety and efficacy of propofol with midazolam for sedation of patients with severe traumatic brain injury: A meta-analysis. Journal of Critical Care, 29(2), 287–290. https://doi.org/10.1016/j.jcrc.2013.10.021

Hu, X., Glenn, T., Scalzo, F., Bergsneider, M., Sarkiss, C., Martin, N., & Vespa, P. (2010). Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Physiological Measurement, 31(5), 679–695. https://doi.org/10.1088/0967-3334/31/5/006

Lagerkranser, M., Stånge, K., & Sollevi, A. (1997). Effects of Propofol on Cerebral Blood Flow, Metabolism and Cerebral Autoregulation in the Anesthetized Pig. Journal of Neurosurgical Anesthesiology, 9(2), 188–193. https://doi.org/10.1097/00008506-199704000-00015

Levin, H. S., Aldrich, E. F., Saydjari, C., Eisenberg, H. M., Foulkes, M. A., Bellefleur, M., Luerssen, T. G., Jane, J. A., Marmarou, A., Marshall, L. F., & Young, H. F. (1992). Severe Head Injury in Children. Neurosurgery, 31(3), 435–444. https://doi.org/10.1227/00006123-199209000-00008

Mikkelsen, M. L. G., Ambrus, R., Miles, J. E., Poulsen, H. H., Moltke, F. B., & Eriksen, T. (2015). Effect of propofol and remifentanil on cerebral perfusion and oxygenation in pigs: a systematic review. Acta Veterinaria Scandinavica, 58(1). https://doi.org/10.1186/s13028-016-0223-6

Peluso, L., Lopez, B. M., & Badenes, R. (2019). Sedation in TBI Patients. Traumatic Brain Injury - Neurobiology, Diagnosis and Treatment. https://doi.org/10.5772/intechopen.85266

Pereira A. S., et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1&isAllowed=y

Petersen, Kurt D., Landsfeldt, U., Cold, G., Petersen, Carsten B., Mau, S., Hauerberg, J., Holst, P., & Olsen, K. (2003). Intracranial Pressure and Cerebral Hemodynamic in Patients with Cerebral Tumors. Anesthesiology, 98(2), 329–336. https://doi.org/10.1097/00000542-200302000-00010

Kotani, Y., Pruna, A., Turi, S., Borghi, G., Lee, T. C., Zangrillo, A., Landoni, G., & Pasin, L. (2023). Propofol and survival: an updated meta-analysis of randomized clinical trials. 27(1). https://doi.org/10.1186/s13054-023-04431-8

Rodríguez-Boto, G., Rivero-Garvía, M., Gutiérrez-González, R., & Márquez-Rivas, J. (2015). Basic concepts about brain pathophysiology and intracranial pressure monitoring. Neurología (English Edition), 30(1), 16–22. https://doi.org/10.1016/j.nrleng.2012.09.002

Slupe, A. M., & Kirsch, J. R. (2018). Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. Journal of Cerebral Blood Flow & Metabolism, 38(12), 2192–2208. https://doi.org/10.1177/0271678x18789273

Stewart, L., Bullock, R., Rafferty, C., Fitch, W., & Teasdale, G. M. (1994). Propofol Sedation in Severe Head Injury Fails to Control High ICP, but Reduces Brain Metabolism. 544–546. https://doi.org/10.1007/978-3-7091-9334-1_150

Vandesteene, A., Trempont, V., Engelman, E., Deloof, T., Focroul, M., Schoutens, A., & Rood, M. (1988). Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia, 43(s1), 42–43. https://doi.org/10.1111/j.1365-2044.1988.tb09067.x

Venkat, P., Chopp, M., & Chen, J. (2016). New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croatian Medical Journal, 57(3), 223–228. https://doi.org/10.3325/cmj.2016.57.223

Wu, M., Yin, X., Chen, M., Liu, Y., Zhang, X., Li, T., Long, Y., Wu, X., Pu, L., Zhang, M., Hu, Z., & Ye, L. (2020). Effects of propofol on intracranial pressure and prognosis in patients with severe brain diseases undergoing endotracheal suctioning. BMC Neurology, 20(1). https://doi.org/10.1186/s12883-020-01972-1

Downloads

Published

15/02/2024

How to Cite

NEVES, N. M. .; KASSAHARA, T. R. .; ARITA, S. T. de A. R. .; PEIXOTO, E.; BRASIL, S. Propofol effects over intracranial pressure waveform and cerebral hemodynamics: A case report . Research, Society and Development, [S. l.], v. 13, n. 2, p. e5613244982, 2024. DOI: 10.33448/rsd-v13i2.44982. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44982. Acesso em: 16 nov. 2024.

Issue

Section

Health Sciences